Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add shark_eager mode. #1575

Merged
merged 1 commit into from
Jun 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
206 changes: 206 additions & 0 deletions shark/shark_eager/shark_eager.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
from typing import Any, Dict, List, Tuple
from collections import defaultdict
from shark.shark_importer import import_with_fx
import torchvision.models as models
import copy
import io
import numpy as np
import sys
import torch
import torch.fx
from torch.fx.node import Node
from typing import Dict
import torch_mlir


def shark_backend(fx_g: torch.fx.GraphModule, inputs, device: str = "cpu"):
mlir_module = torch_mlir.compile(
fx_g, inputs, output_type="linalg-on-tensors"
)
bytecode_stream = io.BytesIO()
mlir_module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
from shark.shark_inference import SharkInference

shark_module = SharkInference(
mlir_module=bytecode,
device=device,
mlir_dialect="tm_tensor",
)
shark_module.compile(extra_args=[])
return shark_module


def _make_single_op_gm(node, captured_val, compiled_graph):
"""Make a GraphModule that just executes the given node."""
g = torch.fx.Graph()
env = {}
inputs = []
for arg in node.args:
if arg and hasattr(arg, "name"):
env[arg.name] = g.placeholder(arg.name)
if isinstance(captured_val[arg.name], (list, tuple)):
for val in captured_val[arg.name]:
inputs.append(val)
else:
inputs.append(captured_val[arg.name])

call = g.node_copy(node, lambda n: env[n.name])
g.output(call)
g.lint()
single_node = torch.fx.GraphModule(torch.nn.Module(), g)
compiled_module = shark_backend(single_node, inputs)
compiled_graph[node.name] = {
"module": compiled_module,
"inputs": [i for i in env],
"result": None,
}
return


def compiled_graph(gm: torch.fx.GraphModule, attr_info):
compiled_graph = {}
g = gm.graph
for node in g.nodes:
if node.op == "call_function":
if not (
node.target in [torch.ops.aten.empty]
or node.name.startswith("getitem")
):
_make_single_op_gm(node, attr_info, compiled_graph)

# Currently torch.aten.empty has an compilation issue, so running natively.
elif node.target in [torch.ops.aten.empty]:
compiled_graph[node.name] = {
"target": node.target,
"args": node.args,
"kwargs": node.kwargs,
"result": None,
}
# Get item is a simple case takes a tuple and return the tensor at a particular index.
elif node.name.startswith("getitem"):
compiled_graph[node.name] = {
"input": node.args[0].name,
"pos": node.args[1],
"result": None,
}

return compiled_graph


class ShapeProp:
"""
Shape propagation. This class takes a `GraphModule`.
Then, its `propagate` method executes the `GraphModule`
node-by-node with the given arguments. As each operation
executes, the ShapeProp class stores away the shape and
element type for the output values of each operation on
the `shape` and `dtype` attributes of the operation's
`Node`.
"""

def __init__(self, mod):
self.mod = mod
self.graph = mod.graph
self.modules = dict(self.mod.named_modules())

def propagate(self, *args):
args_iter = iter(args)
env: Dict[str, Node] = {}

def load_arg(a):
return torch.fx.graph.map_arg(a, lambda n: env[n.name])

def fetch_attr(target: str):
target_atoms = target.split(".")
attr_itr = self.mod
for i, atom in enumerate(target_atoms):
if not hasattr(attr_itr, atom):
raise RuntimeError(
f"Node referenced nonexistant target {'.'.join(target_atoms[:i])}"
)
attr_itr = getattr(attr_itr, atom)
return attr_itr

for node in self.graph.nodes:
if node.op == "placeholder":
result = next(args_iter)
elif node.op == "get_attr":
result = fetch_attr(node.target)
elif node.op == "call_function":
result = node.target(
*load_arg(node.args), **load_arg(node.kwargs)
)
elif node.op == "call_method":
self_obj, *args = load_arg(node.args)
kwargs = load_arg(node.kwargs)
result = getattr(self_obj, node.target)(*args, **kwargs)
elif node.op == "call_module":
result = self.modules[node.target](
*load_arg(node.args), **load_arg(node.kwargs)
)

# This is the only code specific to shape propagation.
# you can delete this `if` branch and this becomes
# a generic GraphModule interpreter.
if isinstance(result, torch.Tensor):
node.shape = result.shape
node.dtype = result.dtype

env[node.name] = result

return env

# return load_arg(self.graph.result)


resnet18 = models.resnet18(pretrained=True)
resnet18.train(False)
input = (torch.randn(1, 3, 224, 224),)

print(resnet18(input[0]))

fx_graph = import_with_fx(resnet18, input, mlir_type="fx")

shape_prop = ShapeProp(fx_graph)

x = shape_prop.propagate(input[0])

shark_graph = compiled_graph(fx_graph, x)


for key in shark_graph:
if key.startswith("getitem"):
input_val = shark_graph[key]["input"]
pos = shark_graph[key]["pos"]
if input_val not in shark_graph:
shark_graph[key]["result"] = x[input_val][pos].detach()
else:
shark_graph[key]["result"] = shark_graph[input_val]["result"][
pos
].detach()
elif key.startswith("empty"):
operator = shark_graph[key]["target"]
args = shark_graph[key]["args"]
kwargs = shark_graph[key]["kwargs"]
shark_graph[key]["result"] = operator(*args, **kwargs).detach()
else:
input_val = shark_graph[key]["inputs"]
input_tensors = []
for input in input_val:
if input not in shark_graph:
input_tensors.append(x[input].detach())
else:
input_tensors.append(shark_graph[input]["result"])

val = shark_graph[key]["module"]("forward", input_tensors)
if isinstance(val, (tuple, list)):
list_val = []
for v in val:
list_val.append(torch.from_numpy(v))
shark_graph[key]["result"] = list_val
else:
shark_graph[key]["result"] = torch.from_numpy(val)


print(shark_graph)
3 changes: 3 additions & 0 deletions shark/shark_importer.py
Original file line number Diff line number Diff line change
Expand Up @@ -555,6 +555,9 @@ def strip_overloads(gm):
add_upcast(fx_g)
fx_g.recompile()

if mlir_type == "fx":
return fx_g

if training:
change_fx_graph_return_to_tuple(fx_g)
inputs = flatten_training_input(inputs)
Expand Down