Skip to content

Commit

Permalink
format utils
Browse files Browse the repository at this point in the history
  • Loading branch information
erogol committed Oct 6, 2020
1 parent 4873601 commit a2606fb
Show file tree
Hide file tree
Showing 6 changed files with 397 additions and 374 deletions.
Empty file.
118 changes: 118 additions & 0 deletions TTS/speaker_encoder/utils/generic_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
import datetime
import importlib
import os
import re

import torch
from TTS.speaker_encoder.model import SpeakerEncoder
from TTS.utils.generic_utils import check_argument


def to_camel(text):
text = text.capitalize()
return re.sub(r'(?!^)_([a-zA-Z])', lambda m: m.group(1).upper(), text)


def setup_model(c):
model = SpeakerEncoder(c.model['input_dim'], c.model['proj_dim'],
c.model['lstm_dim'], c.model['num_lstm_layers'])
return model


def save_checkpoint(model, optimizer, model_loss, out_path,
current_step, epoch):
checkpoint_path = 'checkpoint_{}.pth.tar'.format(current_step)
checkpoint_path = os.path.join(out_path, checkpoint_path)
print(" | | > Checkpoint saving : {}".format(checkpoint_path))

new_state_dict = model.state_dict()
state = {
'model': new_state_dict,
'optimizer': optimizer.state_dict() if optimizer is not None else None,
'step': current_step,
'epoch': epoch,
'loss': model_loss,
'date': datetime.date.today().strftime("%B %d, %Y"),
}
torch.save(state, checkpoint_path)


def save_best_model(model, optimizer, model_loss, best_loss, out_path,
current_step):
if model_loss < best_loss:
new_state_dict = model.state_dict()
state = {
'model': new_state_dict,
'optimizer': optimizer.state_dict(),
'step': current_step,
'loss': model_loss,
'date': datetime.date.today().strftime("%B %d, %Y"),
}
best_loss = model_loss
bestmodel_path = 'best_model.pth.tar'
bestmodel_path = os.path.join(out_path, bestmodel_path)
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(
model_loss, bestmodel_path))
torch.save(state, bestmodel_path)
return best_loss


def check_config_speaker_encoder(c):
"""Check the config.json file of the speaker encoder"""
check_argument('run_name', c, restricted=True, val_type=str)
check_argument('run_description', c, val_type=str)

# audio processing parameters
check_argument('audio', c, restricted=True, val_type=dict)
check_argument('num_mels', c['audio'], restricted=True, val_type=int, min_val=10, max_val=2056)
check_argument('fft_size', c['audio'], restricted=True, val_type=int, min_val=128, max_val=4058)
check_argument('sample_rate', c['audio'], restricted=True, val_type=int, min_val=512, max_val=100000)
check_argument('frame_length_ms', c['audio'], restricted=True, val_type=float, min_val=10, max_val=1000, alternative='win_length')
check_argument('frame_shift_ms', c['audio'], restricted=True, val_type=float, min_val=1, max_val=1000, alternative='hop_length')
check_argument('preemphasis', c['audio'], restricted=True, val_type=float, min_val=0, max_val=1)
check_argument('min_level_db', c['audio'], restricted=True, val_type=int, min_val=-1000, max_val=10)
check_argument('ref_level_db', c['audio'], restricted=True, val_type=int, min_val=0, max_val=1000)
check_argument('power', c['audio'], restricted=True, val_type=float, min_val=1, max_val=5)
check_argument('griffin_lim_iters', c['audio'], restricted=True, val_type=int, min_val=10, max_val=1000)

# training parameters
check_argument('loss', c, enum_list=['ge2e', 'angleproto'], restricted=True, val_type=str)
check_argument('grad_clip', c, restricted=True, val_type=float)
check_argument('epochs', c, restricted=True, val_type=int, min_val=1)
check_argument('lr', c, restricted=True, val_type=float, min_val=0)
check_argument('lr_decay', c, restricted=True, val_type=bool)
check_argument('warmup_steps', c, restricted=True, val_type=int, min_val=0)
check_argument('tb_model_param_stats', c, restricted=True, val_type=bool)
check_argument('num_speakers_in_batch', c, restricted=True, val_type=int)
check_argument('num_loader_workers', c, restricted=True, val_type=int)
check_argument('wd', c, restricted=True, val_type=float, min_val=0.0, max_val=1.0)

# checkpoint and output parameters
check_argument('steps_plot_stats', c, restricted=True, val_type=int)
check_argument('checkpoint', c, restricted=True, val_type=bool)
check_argument('save_step', c, restricted=True, val_type=int)
check_argument('print_step', c, restricted=True, val_type=int)
check_argument('output_path', c, restricted=True, val_type=str)

# model parameters
check_argument('model', c, restricted=True, val_type=dict)
check_argument('input_dim', c['model'], restricted=True, val_type=int)
check_argument('proj_dim', c['model'], restricted=True, val_type=int)
check_argument('lstm_dim', c['model'], restricted=True, val_type=int)
check_argument('num_lstm_layers', c['model'], restricted=True, val_type=int)
check_argument('use_lstm_with_projection', c['model'], restricted=True, val_type=bool)

# in-memory storage parameters
check_argument('storage', c, restricted=True, val_type=dict)
check_argument('sample_from_storage_p', c['storage'], restricted=True, val_type=float, min_val=0.0, max_val=1.0)
check_argument('storage_size', c['storage'], restricted=True, val_type=int, min_val=1, max_val=100)
check_argument('additive_noise', c['storage'], restricted=True, val_type=float, min_val=0.0, max_val=1.0)

# datasets - checking only the first entry
check_argument('datasets', c, restricted=True, val_type=list)
for dataset_entry in c['datasets']:
check_argument('name', dataset_entry, restricted=True, val_type=str)
check_argument('path', dataset_entry, restricted=True, val_type=str)
check_argument('meta_file_train', dataset_entry, restricted=True, val_type=[str, list])
check_argument('meta_file_val', dataset_entry, restricted=True, val_type=str)

Empty file added TTS/speaker_encoder/utils/io.py
Empty file.
233 changes: 233 additions & 0 deletions TTS/speaker_encoder/utils/prepare_voxceleb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,233 @@
# coding=utf-8
# Copyright (C) 2020 ATHENA AUTHORS; Yiping Peng; Ne Luo
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Only support eager mode and TF>=2.0.0
# pylint: disable=no-member, invalid-name, relative-beyond-top-level
# pylint: disable=too-many-locals, too-many-statements, too-many-arguments, too-many-instance-attributes
''' voxceleb 1 & 2 '''

import os
import sys
import zipfile
import subprocess
import hashlib
import pandas
from absl import logging
import tensorflow as tf
import soundfile as sf

gfile = tf.compat.v1.gfile

SUBSETS = {
"vox1_dev_wav":
["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partaa",
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partab",
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partac",
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partad"],
"vox1_test_wav":
["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_test_wav.zip"],
"vox2_dev_aac":
["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaa",
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partab",
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partac",
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partad",
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partae",
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaf",
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partag",
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partah"],
"vox2_test_aac":
["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_test_aac.zip"]
}

MD5SUM = {
"vox1_dev_wav": "ae63e55b951748cc486645f532ba230b",
"vox2_dev_aac": "bbc063c46078a602ca71605645c2a402",
"vox1_test_wav": "185fdc63c3c739954633d50379a3d102",
"vox2_test_aac": "0d2b3ea430a821c33263b5ea37ede312"
}

USER = {
"user": "",
"password": ""
}

speaker_id_dict = {}

def download_and_extract(directory, subset, urls):
"""Download and extract the given split of dataset.
Args:
directory: the directory where to put the downloaded data.
subset: subset name of the corpus.
urls: the list of urls to download the data file.
"""
if not gfile.Exists(directory):
gfile.MakeDirs(directory)

try:
for url in urls:
zip_filepath = os.path.join(directory, url.split("/")[-1])
if os.path.exists(zip_filepath):
continue
logging.info("Downloading %s to %s" % (url, zip_filepath))
subprocess.call('wget %s --user %s --password %s -O %s' %
(url, USER["user"], USER["password"], zip_filepath), shell=True)

statinfo = os.stat(zip_filepath)
logging.info(
"Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size)
)

# concatenate all parts into zip files
if ".zip" not in zip_filepath:
zip_filepath = "_".join(zip_filepath.split("_")[:-1])
subprocess.call('cat %s* > %s.zip' %
(zip_filepath, zip_filepath), shell=True)
zip_filepath += ".zip"
extract_path = zip_filepath.strip(".zip")

# check zip file md5sum
md5 = hashlib.md5(open(zip_filepath, 'rb').read()).hexdigest()
if md5 != MD5SUM[subset]:
raise ValueError("md5sum of %s mismatch" % zip_filepath)

with zipfile.ZipFile(zip_filepath, "r") as zfile:
zfile.extractall(directory)
extract_path_ori = os.path.join(directory, zfile.infolist()[0].filename)
subprocess.call('mv %s %s' % (extract_path_ori, extract_path), shell=True)
finally:
# gfile.Remove(zip_filepath)
pass


def exec_cmd(cmd):
"""Run a command in a subprocess.
Args:
cmd: command line to be executed.
Return:
int, the return code.
"""
try:
retcode = subprocess.call(cmd, shell=True)
if retcode < 0:
logging.info(f"Child was terminated by signal {retcode}")
except OSError as e:
logging.info(f"Execution failed: {e}")
retcode = -999
return retcode


def decode_aac_with_ffmpeg(aac_file, wav_file):
"""Decode a given AAC file into WAV using ffmpeg.
Args:
aac_file: file path to input AAC file.
wav_file: file path to output WAV file.
Return:
bool, True if success.
"""
cmd = f"ffmpeg -i {aac_file} {wav_file}"
logging.info(f"Decoding aac file using command line: {cmd}")
ret = exec_cmd(cmd)
if ret != 0:
logging.error(f"Failed to decode aac file with retcode {ret}")
logging.error("Please check your ffmpeg installation.")
return False
return True


def convert_audio_and_make_label(input_dir, subset,
output_dir, output_file):
"""Optionally convert AAC to WAV and make speaker labels.
Args:
input_dir: the directory which holds the input dataset.
subset: the name of the specified subset. e.g. vox1_dev_wav
output_dir: the directory to place the newly generated csv files.
output_file: the name of the newly generated csv file. e.g. vox1_dev_wav.csv
"""

logging.info("Preprocessing audio and label for subset %s" % subset)
source_dir = os.path.join(input_dir, subset)

files = []
# Convert all AAC file into WAV format. At the same time, generate the csv
for root, _, filenames in gfile.Walk(source_dir):
for filename in filenames:
name, ext = os.path.splitext(filename)
if ext.lower() == ".wav":
_, ext2 = (os.path.splitext(name))
if ext2:
continue
wav_file = os.path.join(root, filename)
elif ext.lower() == ".m4a":
# Convert AAC to WAV.
aac_file = os.path.join(root, filename)
wav_file = aac_file + ".wav"
if not gfile.Exists(wav_file):
if not decode_aac_with_ffmpeg(aac_file, wav_file):
raise RuntimeError("Audio decoding failed.")
else:
continue
speaker_name = root.split(os.path.sep)[-2]
if speaker_name not in speaker_id_dict:
num = len(speaker_id_dict)
speaker_id_dict[speaker_name] = num
# wav_filesize = os.path.getsize(wav_file)
wav_length = len(sf.read(wav_file)[0])
files.append(
(os.path.abspath(wav_file), wav_length, speaker_id_dict[speaker_name], speaker_name)
)

# Write to CSV file which contains four columns:
# "wav_filename", "wav_length_ms", "speaker_id", "speaker_name".
csv_file_path = os.path.join(output_dir, output_file)
df = pandas.DataFrame(
data=files, columns=["wav_filename", "wav_length_ms", "speaker_id", "speaker_name"])
df.to_csv(csv_file_path, index=False, sep="\t")
logging.info("Successfully generated csv file {}".format(csv_file_path))


def processor(directory, subset, force_process):
""" download and process """
urls = SUBSETS
if subset not in urls:
raise ValueError(subset, "is not in voxceleb")

subset_csv = os.path.join(directory, subset + '.csv')
if not force_process and os.path.exists(subset_csv):
return subset_csv

logging.info("Downloading and process the voxceleb in %s", directory)
logging.info("Preparing subset %s", subset)
download_and_extract(directory, subset, urls[subset])
convert_audio_and_make_label(
directory,
subset,
directory,
subset + ".csv"
)
logging.info("Finished downloading and processing")
return subset_csv


if __name__ == "__main__":
logging.set_verbosity(logging.INFO)
if len(sys.argv) != 4:
print("Usage: python prepare_data.py save_directory user password")
sys.exit()

DIR, USER["user"], USER["password"] = sys.argv[1], sys.argv[2], sys.argv[3]
for SUBSET in SUBSETS:
processor(DIR, SUBSET, False)
46 changes: 46 additions & 0 deletions TTS/speaker_encoder/utils/visual.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
import umap
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

matplotlib.use("Agg")


colormap = (
np.array(
[
[76, 255, 0],
[0, 127, 70],
[255, 0, 0],
[255, 217, 38],
[0, 135, 255],
[165, 0, 165],
[255, 167, 255],
[0, 255, 255],
[255, 96, 38],
[142, 76, 0],
[33, 0, 127],
[0, 0, 0],
[183, 183, 183],
],
dtype=np.float,
)
/ 255
)


def plot_embeddings(embeddings, num_utter_per_speaker):
embeddings = embeddings[: 10 * num_utter_per_speaker]
model = umap.UMAP()
projection = model.fit_transform(embeddings)
num_speakers = embeddings.shape[0] // num_utter_per_speaker
ground_truth = np.repeat(np.arange(num_speakers), num_utter_per_speaker)
colors = [colormap[i] for i in ground_truth]

fig, ax = plt.subplots(figsize=(16, 10))
_ = ax.scatter(projection[:, 0], projection[:, 1], c=colors)
plt.gca().set_aspect("equal", "datalim")
plt.title("UMAP projection")
plt.tight_layout()
plt.savefig("umap")
return fig
Loading

0 comments on commit a2606fb

Please sign in to comment.