stage 1. Train multiple independent auto-encoders in one neural network.
stage 2. Calculate the pseudo log-likelihood based on the training auto encoder.
##RUN
$ python run.py --help
usage: run.py [-h] --name NAME --embedding EMBEDDING --dim DIM [--batch BATCH]
[--epoch EPOCH] [--rate RATE] [--cost COST] [--ema]
[--decay DECAY] [--seed SEED] [--device DEVICE] [--verbose]
optional arguments:
-h, --help show this help message and exit
--name NAME, -n NAME target dataset name
--embedding EMBEDDING, -k EMBEDDING
embedding dictionary size
--dim DIM, -d DIM embedding dimension
--batch BATCH, -b BATCH
training batch size
--epoch EPOCH, -e EPOCH
number of epochs for training
--rate RATE, -r RATE learning rate
--cost COST, -c COST commitment cost
--ema, -m using exponential moving average
--decay DECAY, -g DECAY
EMA decay rate
--seed SEED, -s SEED integer for random seed
--device DEVICE, -u DEVICE
which GPU to use, -1 means only use CPU
--verbose, -v verbose mode when do model fitting and sampling
Author: Hao Xiong ([email protected])
##Required package:
Tensorflow 2.x