Skip to content

NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 application for YOLO-Face models

License

Notifications You must be signed in to change notification settings

marcoslucianops/DeepStream-Yolo-Face

Repository files navigation

DeepStream-Yolo-Face

NVIDIA DeepStream SDK application for YOLO-Face models


YOLO objetct detection models and other infos: https://github.com/marcoslucianops/DeepStream-Yolo


Getting started

Supported models

Instructions

1. Download the DeepStream-Yolo-Face repo

git clone https://github.com/marcoslucianops/DeepStream-Yolo-Face.git
cd DeepStream-Yolo-Face

2. Compile the libs

Export the CUDA_VER env according to your DeepStream version and platform:

  • DeepStream 6.3 on x86 platform

    export CUDA_VER=12.1
    
  • DeepStream 6.2 on x86 platform

    export CUDA_VER=11.8
    
  • DeepStream 6.1.1 on x86 platform

    export CUDA_VER=11.7
    
  • DeepStream 6.1 on x86 platform

    export CUDA_VER=11.6
    
  • DeepStream 6.0.1 / 6.0 on x86 platform

    export CUDA_VER=11.4
    
  • DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 on Jetson platform

    export CUDA_VER=11.4
    
  • DeepStream 6.0.1 / 6.0 on Jetson platform

    export CUDA_VER=10.2
    

Compile the libs

make -C nvdsinfer_custom_impl_Yolo_face
make

NOTE: To use the Python code, you need to install the DeepStream Python bindings.

Reference: https://github.com/NVIDIA-AI-IOT/deepstream_python_apps

  • x86 platform:

    wget https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/releases/download/v1.1.8/pyds-1.1.8-py3-none-linux_x86_64.whl
    pip3 install pyds-1.1.8-py3-none-linux_x86_64.whl
    
  • Jetson platform:

    wget https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/releases/download/v1.1.8/pyds-1.1.8-py3-none-linux_aarch64.whl
    pip3 install pyds-1.1.8-py3-none-linux_aarch64.whl
    

NOTE: It is recommended to use Python virtualenv.

NOTE: The steps above only work on DeepStream 6.3. For previous versions, please check the files on the NVIDIA-AI-IOT/deepstream_python_apps repo.

3. Run

  • C code

    ./deepstream -s file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 -c config_infer_primary_yoloV8_face.txt
    
  • Python code

    python3 deepstream.py -s file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 -c config_infer_primary_yoloV8_face.txt
    

NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).

NOTE: To change the source

-s file:// or rtsp:// or http://
--source file:// or rtsp:// or http://

NOTE: To change the config infer file (example for config_infer.txt file)

-c config_infer.txt
--config-infer config_infer.txt

NOTE: To change the nvstreammux batch-size (example for 2; default: 1)

-b 2
--streammux-batch-size 2

NOTE: To change the nvstreammux width (example for 1280; default: 1920)

-w 1280
--streammux-width 1280

NOTE: To change the nvstreammux height (example for 720; default: 1080)

-e 720
--streammux-height 720

NOTE: To change the GPU id (example for 1; default: 0)

-g 1
--gpu-id 1

NOTE: To change the FPS measurement interval (example for 10; default: 5)

-f 10
--fps-interval 10

NMS configuration

For now, the nms-iou-threshold is fixed to 0.45.

NOTE: Make sure to set cluster-mode=4 in the config_infer file.

Detection threshold configuration

[class-attrs-all]
pre-cluster-threshold=0.25
topk=300

My projects: https://www.youtube.com/MarcosLucianoTV