Skip to content

lxtGH/OctaveConv_pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Beyond Convolution

OctaveConv_pytorch

Pytorch implementation of recent operators

This is third parity implementation(un-official) of Following Paper.

  1. Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution(ICCV 2019). paper
  2. Adaptively Connected Neural Networks.(CVPR 2019) paper
  3. Res2net:A New Multi-scale Backbone Architecture(PAMI 2019) paper
  4. ScaleNet:Data-Driven Neuron Allocation for Scale Aggregation Networks (CVPR2019) paper
  5. SRM : A Style-based Recalibration Module for Convolutional Neural Networks paper
  6. SEnet: Squeeze-and-Excitation Networks(CVPR 2018) paper
  7. GEnet: Exploiting Feature Context in Convolutional Neural Networks(NIPS 2018) paper
  8. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks paper
  9. SK-Net: Selective Kernel Networks(CVPR 2019) paper
  10. More Net will be added.

Plan

  1. add Res2Net bolock with SE-layer (done)
  2. add Adaptive-Convolution: both pixel-aware and dataset-aware (done)
  3. Train code on Imagenet. (done)
  4. Add SE-like models. (done)
  5. Keep tracking with new proposed operators. (-)

Usage

check model files under the fig/nn floder.

from lib.nn.OCtaveResnet import resnet50
from lib.nn.res2net import se_resnet50
from lib.nn.AdaptiveConvResnet import PixelAwareResnet50, DataSetAwareResnet50

model = resnet50().cuda()
model = se_resnet50().cuda()
model = PixelAwareResnet50().cuda()
model = DataSetAwareResnet50().cuda()

Training

see exp floder for the detailed information

CheckPoint

Reference and Citation:

  1. OctaveConv: MXNet implementation here
  2. AdaptiveCov: Offical tensorflow implementation here
  3. ScaleNet: here
  4. SGENet:here

Please consider cite the author's paper when using the code for your research.

License

MIT License

About

Pytorch implementation of newly added convolution

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published