Skip to content

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Notifications You must be signed in to change notification settings

lopez-lab/PyRAI2MD-legacy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyRAI2MD

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Citation: Jingbai Li, Patrick Reiser, Benjamin R. Boswell, André Eberhard, Noah Z. Burns, Pascal Friederich, and Steven A. Lopez, "Automatic discovery of photoisomerization mechanisms with nanosecond machine learning photodynamics simulations", Chem. Sci. 2021. DOI: 10.1039/D0SC05610C


                       *
                      /+\
                     /+++\
                    /+++++\
                   /PyRAIMD\
                  /+++++++++\
                 *===========*

                  Python Rapid
             Artificial Intelligence
          Ab Initio Molecular Dynamics

               Developer@Jingbai Li
           Northeastern University, USA

                  version:   0.9
                  
With contributions from(in alphabetic order):
Andre Eberhard	           - Gaussian process regression
Jingbai Li/Daniel Susman   - Zhu-Nakamura surface hopping
Jingbai Li                 - Fewest switches surface hopping
                             Velocity Verlet
                             Interface to OpenMolcas/BAGEL
                             Adaptive sampling (with enforcement)
                             QC/ML non-adiabatic molecular dynamics
Patrick Reiser	           - Neural networks (pyNNsMD)

Special acknowledgment to:
  Steven A. Lopez	 - Project directorship
  Pascal Friederich    - ML directorship

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics (PyRAI2MD) is a package for nonadiabatic molecular dynamics simulation using potential energy surface predicted by machine-learning models. The primary aim of this project is to leverage the present nonadiabatic molecular dynamics techniques enabling nano-second scale simulations in practical molecular systems, which cost unaffordable computational resources using high-level quantum chemical methods like complete active space self-consistent field (CASSCF) with extended multistate second-order perturbative corrections (XMS-CASPT2).

This is the legacy version. The latest version is 2.0 alpha.

About

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published