Skip to content

liubingyu777/PixelLibAPI

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PixelLib API

This repository is a collection of codes using docker and kubernetes to deploy a machine learning model as a Rest API for performing image segmentation. I used docker to build an image segmentation API using PixelLib segmentation library and deploy it in Kubernetes.

Tutorials

1 Docker Image Segmentation Deployment

2 Kubernetes Image Segmentation Deployment

Note:

Read this article I published on the basic concepts of docker and how it is used to build MachineLearning Rest APIs.

Install Docker

Windows Installation

Linux Installation

macOS Installation

Pull PixelLib API from Dockerhub

sudo docker pull ayoolaolafenwa/pixellibapi

Run the API

sudo docker run -p 80:5000 ayoolaolafenwa/pixellibapi

test1

Code For API Testing

import requests

results = requests.post("http://localhost:85/segmentapi", files = {"image": open("sample.jpeg", "rb")}).json()
print(results["outputs"])

Results

{'boxes': [[372, 158, 528, 504], [530, 163, 605, 374], [1, 219, 81, 299], [374, 309, 542, 542], [227, 204, 420, 332], [477, 151, 596, 239], [589, 195, 703, 257], [742, 213, 774, 259], [376, 181, 429, 218], [172, 167, 264, 206], [279, 190, 294, 200], [299, 185, 334, 205]], 'class_ids': [0, 0, 2, 1, 2, 5, 2, 2, 2, 5, 2, 2], 'class_names': ['person', 'person', 'car', 'bicycle', 'car', 'bus', 'car', 'car', 'car', 'bus', 'car', 'car'], 'mask_shape': [581, 774, 12], 'object_counts': {'bicycle': 1, 'bus': 2, 'car': 7, 'person': 2}, 'scores': [99, 99, 99, 99, 99, 98, 98, 97, 86, 81, 57, 54]}

The outputs include a lot of details about the objects detected in the image which include the box coordinates values, class ids, class names, object counts, segmentation mask shape and prediction scores.

Obtain the segmentation masks

Obtain the segmentation masks of the objects segmented using this code below;

import requests
import numpy as np

results = requests.post("http://localhost:85/segmentapi", files = {"image": open("sample.jpeg", "rb")}).json()
segmentation_masks = results["mask_values"]
#convert the masks to numpy arrays for proper output format
masks_numpy_array = np.array(segmentation_masks)
print(masks_numpy_array)

Note: If you print the results["mask_values"] directly it will be too long for a proper view format because the segmentation results by the API is in list. It is better you convert it to numpy arrays to view the actual segmentation values.

Image Segmentation Frontend API

I provided a simple web API to test on images directly and visualize the results. Visit the port you are running the API e.g localhost:80 and perform a simple web image segmentation.

test2
You can choose any image and press the button segment, it will display an output segmented image within seconds.

test3

Build A Custom Docker Image

The code for building this API is available in this repository, clone it, make modifications and build your own custom image.

Clone Repository

git clone ayoolaolafenwa/pixellibapi

Download the PointRend model used for image segmentation and put it in the folder directory PixelLibAPI.

sample folder directory

└── ImageSegmentationAPI
        ├── app.py
        ├── Dockerfile
        ├── pointrend_resnet50.pkl
    
        └── templates
            ├── segment.html

Build Docker Image

cd ImageSegmentationAPI

docker build -t yourimagename

PixelLib API Deployment on Kubernetes

Local Kubernetes Deployment

Note: Ensure that you have docker installed before installing kubectl.

Install Kubectl

Windows Installation

Linux Installation

macOS Installation

Install Minikube

Follow this guide for Minikube Installation.


Start Minikube

minikube start

Clone Repository

git clone ayoolaolafenwa/pixellibapi

cd KubernetesDeployment

Create PixelLibAPI deployment

kubectl apply -f pixellib_deployment.yml

This command will create the pixellib pod deployment and service. This will be the log:

deployment.apps/pixellib-deployment created
service/pixellib-service created

Check the kubernetes pod deployment logs

kubectl get pods
NAME                                   READY   STATUS              RESTARTS   AGE
pixellib-deployment-5b9f884bd5-f9k2m   0/1     ContainerCreating   0          8s
pixellib-deployment-5b9f884bd5-k5b62   0/1     ContainerCreating   0          8s

In the logs the status of the pods is ContainerCreating which means that the pods are still creating. If the internet speed is fast the pods will create within seconds but if not, it will take some minutes. When it is done the status of the pods will change to Running.

NAME                                   READY   STATUS    RESTARTS   AGE
pixellib-deployment-5b9f884bd5-f9k2m   1/1     Running   0          2m32s
pixellib-deployment-5b9f884bd5-k5b62   1/1     Running   0          2m32s

Start the PixelLib deployment Service

minikube service pixellib-service

This will be the output log:

|-----------|------------------|-------------|---------------------------|
| NAMESPACE |       NAME       | TARGET PORT |            URL            |
|-----------|------------------|-------------|---------------------------|
| default   | pixellib-service |          80 | http://192.168.49.2:30184 |
|-----------|------------------|-------------|---------------------------|
* Starting tunnel for service pixellib-service.
|-----------|------------------|-------------|------------------------|
| NAMESPACE |       NAME       | TARGET PORT |          URL           |
|-----------|------------------|-------------|------------------------|
| default   | pixellib-service |             | http://127.0.0.1:50780 |
|-----------|------------------|-------------|------------------------|
* Opening service default/pixellib-service in default browser...
! Because you are using a Docker driver on windows, the terminal needs to be open to run it.

The pixellib service will open in your default browser and if not, copy the second url and paste it in a browser.

This will be the page loaded. You can upload any image to test the service.

test4


Uploaded Image

test5

Segmented Image

test6

Test Kubernetes Deployment Service Segmentation API

import requests

res = requests.post("path-to-service-url", files = {"image":open("sample.jpg", "rb")}).json()
print(res["outputs"])

test image

test7

import requests

out = requests.post("http://127.0.0.1:50780/segmentapi", files = {"image":open("sample.jpeg", "rb")}).json()
print(out["outputs"])

Ouputs

{'boxes': [[32, 380, 127, 612], [245, 334, 324, 549], [584, 208, 649, 356], [58, 433, 106, 495], [787, 521, 1021, 767], [487, 250, 555, 405], [49, 537, 101, 646], [738, 428, 1012, 674], [109, 197, 155, 255], [789, 462, 873, 518], [890, 8, 962, 60], [252, 458, 299, 565], [839, 334, 891, 369], [941, 193, 1024, 
341], [870, 582, 937, 650], [485, 318, 545, 423], [293, 181, 553, 392], [403, 146, 643, 348], [584, 244, 630, 320], [101, 240, 368, 494], [885, 13, 947, 38], [793, 277, 1023, 501], [859, 155, 1002, 278], [101, 233, 359, 496], [128, 183, 167, 249], [255, 214, 456, 430], [588, 297, 639, 374], [969, 227, 1017, 263], [687, 229, 719, 283], [271, 224, 451, 428]], 'class_ids': [0, 0, 0, 24, 2, 0, 1, 2, 24, 0, 9, 1, 0, 2, 0, 3, 7, 7, 24, 2, 9, 2, 2, 7, 0, 7, 1, 0, 2, 2], 'class_names': ['person', 'person', 'person', 'backpack', 'car', 'person', 'bicycle', 'car', 'backpack', 'person', 'traffic light', 'bicycle', 'person', 'car', 'person', 'motorcycle', 'truck', 'truck', 'backpack', 'car', 'traffic light', 'car', 'car', 'truck', 'person', 'truck', 'bicycle', 'person', 'car', 'car'], 'mask_shape': [768, 1024, 30], 'object_counts': {'backpack': 3, 'bicycle': 3, 'car': 8, 'motorcycle': 1, 'person': 9, 'traffic light': 2, 'truck': 4}, 'scores': [99, 99, 99, 99, 97, 96, 95, 92, 91, 90, 89, 88, 87, 86, 84, 84, 84, 84, 76, 72, 72, 71, 68, 68, 59, 58, 57, 57, 55, 50]}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 52.8%
  • HTML 31.3%
  • Dockerfile 15.9%