Skip to content

lexara-prime-ai/spark-connect-rs

 
 

Repository files navigation

Apache Spark Connect Client for Rust

This project houses the experimental client for Spark Connect for Apache Spark written in Rust

Current State of the Project

Currently, the Spark Connect client for Rust is highly experimental and should not be used in any production setting. This is currently a "proof of concept" to identify the methods of interacting with Spark cluster from rust.

The spark-connect-rs aims to provide an entrypoint to Spark Connect, and provide similar DataFrame API interactions.

Project Layout

├── crates          <- crates for the implementation of the client side spark-connect bindings
│   └─ connect      <- crate for 'spark-connect-rs'
│      └─ protobuf  <- connect protobuf for apache/spark
├── examples        <- examples of using different aspects of the crate
├── datasets        <- sample files from the main spark repo

Future state would be to have additional crates that allow for easier creation of other language bindings.

Getting Started

This section explains how run Spark Connect Rust locally starting from 0.

Step 1: Install rust via rustup: https://www.rust-lang.org/tools/install

Step 2: Ensure you have a cmake and protobuf installed on your machine

Step 3: Run the following commands to clone the repo

git clone https://github.com/sjrusso8/spark-connect-rs.git

cargo build

Step 4: Setup the Spark Driver on localhost either by downloading spark or with docker.

With local spark:

  1. Download Spark distribution (3.5.1 recommended), unzip the package.

  2. Set your SPARK_HOME environment variable to the location where spark was extracted to,

  3. Start the Spark Connect server with the following command (make sure to use a package version that matches your Spark distribution):

$ $SPARK_HOME/sbin/start-connect-server.sh --packages "org.apache.spark:spark-connect_2.12:3.5.1,io.delta:delta-spark_2.12:3.0.0" \
      --conf "spark.driver.extraJavaOptions=-Divy.cache.dir=/tmp -Divy.home=/tmp" \
      --conf "spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension" \
      --conf "spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog"

With docker:

  1. Start the Spark Connect server by leveraging the created docker-compose.yml in this repo. This will start a Spark Connect Server running on port 15002
$ docker compose up --build -d

Step 5: Run an example from the repo under /examples

Features

The following section outlines some of the larger functionality that are not yet working with this Spark Connect implementation.

  • done TLS authentication & Databricks compatability via the feature flag feature = 'tls'
  • open StreamingQueryManager
  • open UDFs or any type of functionality that takes a closure (foreach, foreachBatch, etc.)

SparkSession

Spark Session type object and its implemented traits

SparkSession API Comment
active open
addArtifact(s) open
addTag done
clearTags done
copyFromLocalToFs open
createDataFrame partial Partial. Only works for RecordBatch
getActiveSessions open
getTags done
interruptAll done
interruptOperation done
interruptTag done
newSession open
range done
removeTag done
sql done
stop open
table done
catalog done Catalog
client done unstable developer api for testing only
conf done Conf
read done DataFrameReader
readStream done DataStreamReader
streams done Streams
udf open Udf - may not be possible
udtf open Udtf - may not be possible
version done

SparkSessionBuilder

SparkSessionBuilder API Comment
appName done
config done
master open
remote partial Validate using spark connection string

StreamingQueryManager

StreamingQueryManager API Comment
awaitAnyTermination done
get done
resetTerminated done
active done

StreamingQuery

StreamingQuery API Comment
awaitTermination done
exception done
explain done
processAllAvailable done
stop done
id done
isActive done
lastProgress done
name done
recentProgress done
runId done
status done

DataStreamReader

DataStreamReader API Comment
csv open
format done
json open
load done
option done
options done
orc open
parquet open
schema done
table open
text open

DataFrameReader

DataFrameReader API Comment
csv done
format done
json done
load done
option done
options done
orc done
parquet done
schema done
table done
text done

DataStreamWriter

Start a streaming job and return a StreamingQuery object to handle the stream operations.

DataStreamWriter API Comment
foreach
foreachBatch
format done
option done
options done
outputMode done Uses an Enum for OutputMode
partitionBy done
queryName done
start done
toTable done
trigger done Uses an Enum for TriggerMode

StreamingQueryListener

StreamingQueryListener API Comment
onQueryIdle open
onQueryProgress open
onQueryStarted open
onQueryTerminated open

UdfRegistration (may not be possible)

UDFRegistration API Comment
register open
registerJavaFunction open
registerJavaUDAF open

UdtfRegistration (may not be possible)

UDTFRegistration API Comment
register open

RuntimeConfig

RuntimeConfig API Comment
get done
isModifiable done
set done
unset done

Catalog

Catalog API Comment
cacheTable done
clearCache done
createExternalTale open
createTable open
currentCatalog done
currentDatabase done
databaseExists done
dropGlobalTempView done
dropTempView done
functionExists done
getDatabase done
getFunction done
getTable done
isCached done
listCatalogs done
listDatabases done
listFunctions done
listTables done
recoverPartitions done
refreshByPath done
refreshTable done
registerFunction open
setCurrentCatalog done
setCurrentDatabase done
tableExists done
uncacheTable done

DataFrame

Spark DataFrame type object and its implemented traits.

DataFrame API Comment
agg done
alias done
approxQuantile done
cache done
checkpoint open Not part of Spark Connect
coalesce done
colRegex done
collect done
columns done
corr done
count done
cov done
createGlobalTempView done
createOrReplaceGlobalTempView done
createOrReplaceTempView done
createTempView done
crossJoin done
crosstab done
cube done
describe done
distinct done
drop done
dropDuplicates done
dropDuplicatesWithinWatermark done
drop_duplicates done
dropna done
dtypes done
exceptAll done
explain done
fillna done
filter done
first done
foreach open
foreachPartition open
freqItems done
groupBy done
head done
hint done
inputFiles done
intersect done
intersectAll done
isEmpty done
isLocal done
isStreaming done
join done
limit done
localCheckpoint open Not part of Spark Connect
mapInPandas open TBD on this exact implementation
mapInArrow open TBD on this exact implementation
melt done
na done
observe open
offset done
orderBy done
persist done
printSchema done
randomSplit done
registerTempTable done
repartition done
repartitionByRange done
replace done
rollup done
sameSemantics done
sample done
sampleBy done
schema done
select done
selectExpr done
semanticHash done
show done
sort done
sortWithinPartitions done
sparkSession done
stat done
storageLevel done
subtract done
summary done
tail done
take done
to done
toDF done
toJSON partial Does not return an RDD but a long JSON formatted String
toLocalIterator open
toPandas to_polars & toPolars partial Convert to a polars::frame::DataFrame
new to_datafusion & toDataFusion done Convert to a datafusion::dataframe::DataFrame
transform done
union done
unionAll done
unionByName done
unpersist done
unpivot done
where done use filter instead, where is a keyword for rust
withColumn done
withColumns done
withColumnRenamed done
withColumnsRenamed done
withMetadata done
withWatermark done
write done
writeStream done
writeTo done

DataFrameWriter

Spark Connect should respect the format as long as your cluster supports the specified type and has the required jars

DataFrameWriter API Comment
bucketBy done
csv done
format done
insertInto done
jdbc
json done
mode done
option done
options done
orc done
parquet done
partitionBy
save done
saveAsTable done
sortBy done
text done

DataFrameWriterV2

DataFrameWriterV2 API Comment
append done
create done
createOrReplace done
option done
options done
overwrite done
overwritePartitions done
partitionedBy done
replace done
tableProperty done
using done

Column

Spark Column type object and its implemented traits

Column API Comment
alias done
asc done
asc_nulls_first done
asc_nulls_last done
astype open
between open
cast done
contains done
desc done
desc_nulls_first done
desc_nulls_last done
dropFields done
endswith done
eqNullSafe open
getField open This is depreciated but will need to be implemented
getItem open This is depreciated but will need to be implemented
ilike done
isNotNull done
isNull done
isin done
like done
name done
otherwise open
over done Refer to Window for creating window specifications
rlike done
startswith done
substr done
when open
withField done
eq == done Rust does not like when you try to overload == and return something other than a bool. Currently implemented column equality like col('name').eq(col('id')). Not the best, but it works for now
addition + done
subtration - done
multiplication * done
division / done
OR | done
AND & done
XOR ^ done
Negate ~ done

Functions

Only a few of the functions are covered by unit tests.

Functions API Comment
abs done
acos done
acosh done
add_months done
aggregate open
approxCountDistinct open
approx_count_distinct done
array done
array_append done
array_compact done
array_contains open
array_distinct done
array_except done
array_insert open
array_intersect done
array_join open
array_max done
array_min done
array_position done
array_remove done
array_repeat done
array_sort open
array_union done
arrays_overlap open
arrays_zip done
asc done
asc_nulls_first done
asc_nulls_last done
ascii done
asin done
asinh done
assert_true open
atan done
atan2 done
atanh done
avg done
base64 done
bin done
bit_length done
bitwiseNOT open
bitwise_not done
broadcast open
bround open
bucket open
call_udf open
cbrt done
ceil done
coalesce done
col done
collect_list done
collect_set done
column done
concat done
concat_ws open
conv open
corr open
cos open
cosh open
cot open
count open
countDistinct open
count_distinct open
covar_pop done
covar_samp done
crc32 done
create_map done
csc done
cume_dist done
current_date done
current_timestamp done
date_add done
date_format open
date_sub done
date_trunc open
datediff done
dayofmonth done
dayofweek done
dayofyear done
days done
decode open
degrees done
dense_rank done
desc done
desc_nulls_first done
desc_nulls_last done
element_at open
encode open
exists open
exp done
explode done
explode_outer done
expm1 done
expr done
factorial done
filter open
first open
flatten done
floor done
forall open
format_number open
format_string open
from_csv open
from_json open
from_unixtime open
from_utc_timestamp open
functools open
get open
get_active_spark_context open
get_json_object open
greatest done
grouping done
grouping_id open
has_numpy open
hash done
hex done
hour done
hours done
hypot open
initcap done
inline done
inline_outer done
input_file_name done
inspect open
instr open
isnan done
isnull done
json_tuple open
kurtosis done
lag open
last open
last_day open
lead open
least done
length done
levenshtein open
lit done
localtimestamp done
locate open
log done
log10 done
log1p done
log2 done
lower done
lpad open
ltrim done
make_date open
map_concat done
map_contains_key open
map_entries done
map_filter open
map_from_arrays open
map_from_entries done
map_keys done
map_values done
map_zip_with open
max done
max_by open
md5 done
mean done
median done
min done
min_by open
minute done
mode open
monotonically_increasing_id done
month done
months done
months_between open
nanvl done
next_day open
np open
nth_value open
ntile done
octet_length done
overlay open
overload open
pandas_udf open
percent_rank done
percentile_approx open
pmod open
posexplode done
posexplode_outer done
pow done
product done
quarter done
radians done
raise_error open
rand done
randn done
rank done
regexp_extract open
regexp_replace open
repeat open
reverse done
rint done
round done
row_number done
rpad open
rtrim done
schema_of_csv open
schema_of_json open
sec done
second done
sentences open
sequence open
session_window open
sha1 done
sha2 open
shiftLeft open
shiftRight open
shiftRightUnsigned open
shiftleft open
shiftright open
shiftrightunsigned open
shuffle done
signum done
sin done
sinh done
size done
skewness done
slice open
sort_array open
soundex done
spark_partition_id done
split open
sqrt done
stddev done
stddev_pop done
stddev_samp done
struct open
substring open
substring_index open
sum done
sumDistinct open
sum_distinct open
sys open
tan done
tanh done
timestamp_seconds done
toDegrees open
toRadians open
to_csv open
to_date open
to_json open
to_str open
to_timestamp open
to_utc_timestamp open
transform open
transform_keys open
transform_values open
translate open
trim done
trunc open
try_remote_functions open
udf open
unbase64 done
unhex done
unix_timestamp open
unwrap_udt open
upper done
var_pop done
var_samp done
variance done
warnings open
weekofyear done
when open
window open
window_time open
xxhash64 done
year done
years done
zip_with open

Data Types

Data types are used for creating schemas and for casting columns to specific types

Column API Comment
ArrayType done
BinaryType done
BooleanType done
ByteType done
DateType done
DecimalType done
DoubleType done
FloatType done
IntegerType done
LongType done
MapType done
NullType done
ShortType done
StringType done
CharType done
VarcharType done
StructField done
StructType done
TimestampType done
TimestampNTZType done
DayTimeIntervalType done
YearMonthIntervalType done

Literal Types

Create Spark literal types from these rust types. E.g. lit(1_i64) would be a LongType() in the schema.

An array can be made like lit([1_i16,2_i16,3_i16]) would result in an ArrayType(Short) since all the values of the slice can be translated into literal type.

Spark Literal Type Rust Type Status
Null open
Binary &[u8] done
Boolean bool done
Byte open
Short i16 done
Integer i32 done
Long i64 done
Float f32 done
Double f64 done
Decimal open
String &str / String done
Date chrono::NaiveDate done
Timestamp chrono::DateTime<Tz> done
TimestampNtz chrono::NaiveDateTime done
CalendarInterval open
YearMonthInterval open
DayTimeInterval open
Array slice / Vec done
Map Create with the function create_map done
Struct Create with the function struct_col or named_struct done

Window & WindowSpec

For ease of use it's recommended to use Window to create the WindowSpec.

Window API Comment
currentRow done
orderBy done
partitionBy done
rangeBetween done
rowsBetween done
unboundedFollowing done
unboundedPreceding done
WindowSpec.orderBy done
WindowSpec.partitionBy done
WindowSpec.rangeBetween done
WindowSpec.rowsBetween done

About

Apache Spark Connect Client for Rust

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust 99.5%
  • Shell 0.5%