-
Notifications
You must be signed in to change notification settings - Fork 99
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Sparse: CrsMatrix traversal initial implementation
The current implementation is fairly basic but allows users to get a truly portable way to run functor on CPU and GPU over the values of a matrix. This should lower the barrier to get some distributed custom algorithms in users codes and libraries.
- Loading branch information
Showing
4 changed files
with
354 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
//@HEADER | ||
// ************************************************************************ | ||
// | ||
// Kokkos v. 4.0 | ||
// Copyright (2022) National Technology & Engineering | ||
// Solutions of Sandia, LLC (NTESS). | ||
// | ||
// Under the terms of Contract DE-NA0003525 with NTESS, | ||
// the U.S. Government retains certain rights in this software. | ||
// | ||
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://kokkos.org/LICENSE for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// | ||
//@HEADER | ||
|
||
namespace KokkosSparse { | ||
namespace Impl { | ||
|
||
template <class execution_space, class matrix_type, class functor_type> | ||
struct crsmatrix_traversal_functor { | ||
using size_type = typename matrix_type::non_const_size_type; | ||
using ordinal_type = typename matrix_type::non_const_ordinal_type; | ||
using value_type = typename matrix_type::non_const_value_type; | ||
|
||
using team_policy_type = Kokkos::TeamPolicy<execution_space>; | ||
using team_member_type = typename team_policy_type::member_type; | ||
|
||
matrix_type A; | ||
functor_type func; | ||
ordinal_type rows_per_team; | ||
|
||
crsmatrix_traversal_functor(const matrix_type& A_, const functor_type& func_, | ||
const ordinal_type rows_per_team_) | ||
: A(A_), func(func_), rows_per_team(rows_per_team_) {} | ||
|
||
// RangePolicy overload | ||
KOKKOS_INLINE_FUNCTION void operator()(const ordinal_type rowIdx) const { | ||
for (size_type entryIdx = A.graph.row_map(rowIdx); | ||
entryIdx < A.graph.row_map(rowIdx + 1); ++entryIdx) { | ||
const ordinal_type colIdx = A.graph.entries(entryIdx); | ||
const value_type value = A.values(entryIdx); | ||
|
||
func(rowIdx, entryIdx, colIdx, value); | ||
} | ||
} | ||
|
||
// TeamPolicy overload | ||
KOKKOS_INLINE_FUNCTION void operator()(const team_member_type& dev) const { | ||
const ordinal_type teamWork = dev.league_rank() * rows_per_team; | ||
Kokkos::parallel_for( | ||
Kokkos::TeamThreadRange(dev, rows_per_team), [&](ordinal_type loop) { | ||
// iRow represents a row of the matrix, so its correct type is | ||
// ordinal_type. | ||
const ordinal_type rowIdx = teamWork + loop; | ||
if (rowIdx >= A.numRows()) { | ||
return; | ||
} | ||
|
||
const ordinal_type row_length = | ||
A.graph.row_map(rowIdx + 1) - A.graph.row_map(rowIdx); | ||
Kokkos::parallel_for( | ||
Kokkos::ThreadVectorRange(dev, row_length), | ||
[&](ordinal_type rowEntryIdx) { | ||
const size_type entryIdx = A.graph.row_map(rowIdx) + | ||
static_cast<size_type>(rowEntryIdx); | ||
const ordinal_type colIdx = A.graph.entries(entryIdx); | ||
const value_type value = A.values(entryIdx); | ||
|
||
func(rowIdx, entryIdx, colIdx, value); | ||
}); | ||
}); | ||
} | ||
}; | ||
|
||
template <class execution_space> | ||
int64_t crsmatrix_traversal_launch_parameters(int64_t numRows, int64_t nnz, | ||
int64_t rows_per_thread, | ||
int& team_size, | ||
int& vector_length) { | ||
int64_t rows_per_team; | ||
int64_t nnz_per_row = nnz / numRows; | ||
|
||
if (nnz_per_row < 1) nnz_per_row = 1; | ||
|
||
int max_vector_length = 1; | ||
#ifdef KOKKOS_ENABLE_CUDA | ||
if (std::is_same<execution_space, Kokkos::Cuda>::value) | ||
max_vector_length = 32; | ||
#endif | ||
#ifdef KOKKOS_ENABLE_HIP | ||
if (std::is_same<execution_space, Kokkos::Experimental::HIP>::value) | ||
max_vector_length = 64; | ||
#endif | ||
|
||
if (vector_length < 1) { | ||
vector_length = 1; | ||
while (vector_length < max_vector_length && vector_length * 6 < nnz_per_row) | ||
vector_length *= 2; | ||
} | ||
|
||
// Determine rows per thread | ||
if (rows_per_thread < 1) { | ||
if (KokkosKernels::Impl::kk_is_gpu_exec_space<execution_space>()) | ||
rows_per_thread = 1; | ||
else { | ||
if (nnz_per_row < 20 && nnz > 5000000) { | ||
rows_per_thread = 256; | ||
} else | ||
rows_per_thread = 64; | ||
} | ||
} | ||
|
||
if (team_size < 1) { | ||
if (KokkosKernels::Impl::kk_is_gpu_exec_space<execution_space>()) { | ||
team_size = 256 / vector_length; | ||
} else { | ||
team_size = 1; | ||
} | ||
} | ||
|
||
rows_per_team = rows_per_thread * team_size; | ||
|
||
if (rows_per_team < 0) { | ||
int64_t nnz_per_team = 4096; | ||
int64_t conc = execution_space().concurrency(); | ||
while ((conc * nnz_per_team * 4 > nnz) && (nnz_per_team > 256)) | ||
nnz_per_team /= 2; | ||
rows_per_team = (nnz_per_team + nnz_per_row - 1) / nnz_per_row; | ||
} | ||
|
||
return rows_per_team; | ||
} | ||
|
||
template <class execution_space, class crsmatrix_type, class functor_type> | ||
void crsmatrix_traversal_on_host(const execution_space& space, | ||
const crsmatrix_type& A, | ||
const functor_type& func) { | ||
// Wrap user functor with crsmatrix_traversal_functor | ||
crsmatrix_traversal_functor<execution_space, crsmatrix_type, functor_type> | ||
traversal_func(A, func, -1); | ||
|
||
// Launch traversal kernel | ||
Kokkos::parallel_for( | ||
"KokkosSparse::crsmatrix_traversal", | ||
Kokkos::RangePolicy<execution_space>(space, 0, A.numRows()), | ||
traversal_func); | ||
} | ||
|
||
template <class execution_space, class crsmatrix_type, class functor_type> | ||
void crsmatrix_traversal_on_gpu(const execution_space& space, | ||
const crsmatrix_type& A, | ||
const functor_type& func) { | ||
// Wrap user functor with crsmatrix_traversal_functor | ||
int64_t rows_per_thread = 0; | ||
int team_size = 0, vector_length = 0; | ||
const int64_t rows_per_team = | ||
crsmatrix_traversal_launch_parameters<execution_space>( | ||
A.numRows(), A.nnz(), rows_per_thread, team_size, vector_length); | ||
const int nteams = | ||
(static_cast<int>(A.numRows()) + rows_per_team - 1) / rows_per_team; | ||
crsmatrix_traversal_functor<execution_space, crsmatrix_type, functor_type> | ||
traversal_func(A, func, rows_per_team); | ||
|
||
// Launch traversal kernel | ||
Kokkos::parallel_for("KokkosSparse::crsmatrix_traversal", | ||
Kokkos::TeamPolicy<execution_space>( | ||
space, nteams, team_size, vector_length), | ||
traversal_func); | ||
} | ||
|
||
} // namespace Impl | ||
} // namespace KokkosSparse |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
//@HEADER | ||
// ************************************************************************ | ||
// | ||
// Kokkos v. 4.0 | ||
// Copyright (2022) National Technology & Engineering | ||
// Solutions of Sandia, LLC (NTESS). | ||
// | ||
// Under the terms of Contract DE-NA0003525 with NTESS, | ||
// the U.S. Government retains certain rights in this software. | ||
// | ||
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://kokkos.org/LICENSE for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// | ||
//@HEADER | ||
|
||
/// \file KokkosSparse_CrsMatrix_traversal.hpp | ||
/// \brief Traversal method to access all entries in a CrsMatrix | ||
/// | ||
/// blah | ||
|
||
#ifndef KOKKOSSPARSE_CRSMATRIX_TRAVERSAL_HPP | ||
#define KOKKOSSPARSE_CRSMATRIX_TRAVERSAL_HPP | ||
|
||
#include "Kokkos_Core.hpp" | ||
|
||
#include "KokkosSparse_CrsMatrix.hpp" | ||
#include "KokkosKernels_ExecSpaceUtils.hpp" | ||
|
||
#include "KokkosSparse_CrsMatrix_traversal_impl.hpp" | ||
|
||
namespace KokkosSparse { | ||
namespace Experimental { | ||
|
||
template <class execution_space, class crsmatrix_type, class functor_type> | ||
void crsmatrix_traversal(const execution_space& space, | ||
const crsmatrix_type& matrix, functor_type& functor) { | ||
// Choose between device and host implementation | ||
if constexpr (KokkosKernels::Impl::kk_is_gpu_exec_space<execution_space>()) { | ||
KokkosSparse::Impl::crsmatrix_traversal_on_gpu(space, matrix, functor); | ||
} else { | ||
KokkosSparse::Impl::crsmatrix_traversal_on_host(space, matrix, functor); | ||
} | ||
} | ||
|
||
template <class crsmatrix_type, class functor_type> | ||
void crsmatrix_traversal(const crsmatrix_type& matrix, functor_type& functor) { | ||
using execution_space = typename crsmatrix_type::execution_space; | ||
execution_space space{}; | ||
crsmatrix_traversal(space, matrix, functor); | ||
} | ||
|
||
} // namespace Experimental | ||
} // namespace KokkosSparse | ||
|
||
#endif // KOKKOSSPARSE_CRSMATRIX_TRAVERSAL_HPP |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
//@HEADER | ||
// ************************************************************************ | ||
// | ||
// Kokkos v. 4.0 | ||
// Copyright (2022) National Technology & Engineering | ||
// Solutions of Sandia, LLC (NTESS). | ||
// | ||
// Under the terms of Contract DE-NA0003525 with NTESS, | ||
// the U.S. Government retains certain rights in this software. | ||
// | ||
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://kokkos.org/LICENSE for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// | ||
//@HEADER | ||
|
||
/// \file Test_Sparse_SortCrs.hpp | ||
/// \brief Tests for sort_crs_matrix and sort_crs_graph in | ||
/// KokkosSparse_SortCrs.hpp | ||
|
||
#ifndef TEST_SPARSE_CRSMATRIX_TRAVERSAL_HPP | ||
#define TEST_SPARSE_CRSMATRIX_TRAVERSAL_HPP | ||
|
||
#include <Kokkos_Core.hpp> | ||
|
||
#include "KokkosKernels_Test_Structured_Matrix.hpp" | ||
#include "KokkosSparse_CrsMatrix_traversal.hpp" | ||
|
||
namespace TestCrsMatrixTraversal { | ||
|
||
template <class CrsMatrix> | ||
struct diag_extraction { | ||
using diag_view = typename CrsMatrix::values_type::non_const_type; | ||
using size_type = typename CrsMatrix::non_const_size_type; | ||
using ordinal_type = typename CrsMatrix::non_const_ordinal_type; | ||
using value_type = typename CrsMatrix::non_const_value_type; | ||
|
||
diag_view diag; | ||
|
||
diag_extraction(CrsMatrix A) { | ||
diag = diag_view("diag values", A.numRows()); | ||
}; | ||
|
||
KOKKOS_INLINE_FUNCTION void operator()(const ordinal_type rowIdx, | ||
const size_type /*entryIdx*/, | ||
const ordinal_type colIdx, | ||
const value_type value) const { | ||
if (rowIdx == colIdx) { | ||
diag(rowIdx) = value; | ||
} | ||
} | ||
}; | ||
|
||
} // namespace TestCrsMatrixTraversal | ||
|
||
void testCrsMatrixTraversal(int testCase) { | ||
using namespace TestCrsMatrixTraversal; | ||
using Device = | ||
Kokkos::Device<TestExecSpace, typename TestExecSpace::memory_space>; | ||
using Matrix = KokkosSparse::CrsMatrix<default_scalar, default_lno_t, Device, | ||
void, default_size_type>; | ||
using Vector = Kokkos::View<default_scalar*, TestExecSpace::memory_space>; | ||
|
||
constexpr int nx = 4, ny = 4; | ||
constexpr bool leftBC = true, rightBC = false, topBC = false, botBC = false; | ||
|
||
Kokkos::View<int * [3], Kokkos::HostSpace> mat_structure("Matrix Structure", | ||
2); | ||
mat_structure(0, 0) = nx; | ||
mat_structure(0, 1) = (leftBC ? 1 : 0); | ||
mat_structure(0, 2) = (rightBC ? 1 : 0); | ||
|
||
mat_structure(1, 0) = ny; | ||
mat_structure(1, 1) = (topBC ? 1 : 0); | ||
mat_structure(1, 2) = (botBC ? 1 : 0); | ||
|
||
Matrix A = Test::generate_structured_matrix2D<Matrix>("FD", mat_structure); | ||
|
||
Vector diag_ref("diag ref", A.numRows()); | ||
auto diag_ref_h = Kokkos::create_mirror_view(diag_ref); | ||
diag_ref_h(0) = 1; | ||
diag_ref_h(1) = 3; | ||
diag_ref_h(2) = 3; | ||
diag_ref_h(3) = 2; | ||
diag_ref_h(4) = 1; | ||
diag_ref_h(5) = 4; | ||
diag_ref_h(6) = 4; | ||
diag_ref_h(7) = 3; | ||
diag_ref_h(8) = 1; | ||
diag_ref_h(9) = 4; | ||
diag_ref_h(10) = 4; | ||
diag_ref_h(11) = 3; | ||
diag_ref_h(12) = 1; | ||
diag_ref_h(13) = 3; | ||
diag_ref_h(14) = 3; | ||
diag_ref_h(15) = 2; | ||
|
||
// Run the diagonal extraction functor | ||
// using traversal function. | ||
diag_extraction<Matrix> func(A); | ||
KokkosSparse::Experimental::crsmatrix_traversal(A, func); | ||
Kokkos::fence(); | ||
|
||
// Extract the diagonal view from functor | ||
auto diag_h = Kokkos::create_mirror_view(func.diag); | ||
Kokkos::deep_copy(diag_h, func.diag); | ||
|
||
// Check for correctness | ||
bool matches = true; | ||
for (int rowIdx = 0; rowIdx < A.numRows(); ++rowIdx) { | ||
if (diag_ref_h(rowIdx) != diag_h(rowIdx)) matches = false; | ||
} | ||
|
||
EXPECT_TRUE(matches) | ||
<< "Test case " << testCase | ||
<< ": matrix with zeros filtered out does not match reference."; | ||
} | ||
|
||
TEST_F(TestCategory, sparse_crsmatrix_traversal) { | ||
for (int testCase = 0; testCase < 1; testCase++) | ||
testCrsMatrixTraversal(testCase); | ||
} | ||
|
||
#endif // TEST_SPARSE_CRSMATRIX_TRAVERSAL_HPP |