Skip to content

Train AI (Keras + Tensorflow) to defend apps with Django REST Framework + Celery + Swagger + JWT - deploys to Kubernetes and OpenShift Container Platform

License

Notifications You must be signed in to change notification settings

jay-johnson/train-ai-with-django-swagger-jwt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AntiNex REST API

Automate training AI to defend applications with a Django 2.0+ REST Framework + Celery + Swagger + JWT using Keras and Tensorflow.

Now supports building the same highly accurate deep neural networks as the AntiNex Core (99.8% accuracy with Django, Flask, React + Redux, Vue and Spring). This repository is fully dockerized and after the django celery worker finishes processing, it will auto-push predictions to the core's celery worker which is decoupled from django and the django database. The core's celery worker stores pre-trained AI neural networks in memory for faster predictions and supports re-training models as needed.

For those wanting to scale up their processing speeds, AntiNex deploys on OpenShift Container Platform and Kubernetes with persistent database volumes for Postgres (Crunchy Data) and Redis (Bitnami)

./tests/images/django-rest-framework-with-swagger-and-jwt-trains-a-deep-neural-network-using-keras-and-tensorflow-with-83-percent-accuracy.gif

AntiNex Stack Status

The AntiNex REST API is part of the AntiNex stack:

Component Build Docs Link Docs Build
REST API Travis Tests Docs Read the Docs REST API Tests
Core Worker Travis AntiNex Core Tests Docs Read the Docs AntiNex Core Tests
Network Pipeline Travis AntiNex Network Pipeline Tests Docs Read the Docs AntiNex Network Pipeline Tests
AI Utils Travis AntiNex AI Utils Tests Docs Read the Docs AntiNex AI Utils Tests
Client Travis AntiNex Client Tests Docs Read the Docs AntiNex Client Tests

Supported API Requests

This repository was built to help capture non-attack network traffic and to improve the accuracy of the Keras + Tensorflow Deep Neural Networks by providing them a simple multi-tenant REST API that has Swagger + JWT authentication baked into a single web application. By default, all created Deep Neural Networks are automatically saved as JSON including model weights. It also does not require a database (unless you want to set it up), and will be scaled out with Celery Connectors in the future. Please refer to the Network Pipeline repository for more details. This Django application server also comes with a functional Celery worker for running heavyweight, time-intensive tasks required for asynchronous use cases. This is good for when you are trying to train a deep net that takes a few minutes, and you do not want your HTTP client to time out.

I plan to automate the tests in a loop and then release the captured HTTP traffic to compile the first non-attack dataset for pairing up with the OWASP attack data which is already recorded and available in:

https://github.com/jay-johnson/network-pipeline-datasets

Update: 2018-02-25 - These merged datasets and accuracies are now available in the repository:

https://github.com/jay-johnson/antinex-datasets

Watch Getting Started

Assuming your host has the pips already cached locally this takes about a minute.

Install

Tested on Ubuntu 17.10, Ubuntu 18.04 and works on OpenShift Container Platform with Kubernetes.

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/train-ai-with-django-swagger-jwt.git /opt/antinex/api
cd /opt/antinex/api
./install.sh

Getting Started With Docker

You can run without these optional steps and just use the default SQLite database. If you want to use docker and download all the containers, you can use the compose.yml file to start all of the containers and download the latest ai-core docker image which is ~2.5 GB on disk (built with Dockerfile and stored on Docker Hub).

To start all run:

# if you do not have docker compose installed, you can try installing it with:
# pip install docker-compose
./run-all.sh

Verify the containers started

docker ps
CONTAINER ID        IMAGE                                COMMAND                  CREATED             STATUS              PORTS                    NAMES
d34c8973066b        jayjohnson/antinex-pipeline:latest   "/bin/sh -c 'cd /opt…"   2 hours ago         Up 2 hours                                   pipeline
12ef5482bc17        jayjohnson/antinex-worker:latest     "/bin/sh -c 'cd /opt…"   2 hours ago         Up 2 hours                                   worker
da7970ae165f        jayjohnson/antinex-api:latest        "/bin/sh -c 'cd /opt…"   2 hours ago         Up 2 hours                                   api
11a2c95b7247        jayjohnson/antinex-core:latest       "/bin/sh -c 'cd /opt…"   2 hours ago         Up 2 hours                                   core
1f26d89c8c2c        jayjohnson/antinex-jupyter:latest    "/opt/antinex/core/d…"   2 hours ago         Up 2 hours                                   jupyter
4905682ff3b4        postgres:10.4-alpine                 "docker-entrypoint.s…"   2 hours ago         Up 2 hours          0.0.0.0:5432->5432/tcp   postgres
fd8300740935        redis:4.0.9-alpine                   "docker-entrypoint.s…"   2 hours ago         Up 2 hours          0.0.0.0:6379->6379/tcp   redis
7c682ba78adb        jayjohnson/pgadmin4:1.0.0            "python ./usr/local/…"   2 hours ago         Up 2 hours          0.0.0.0:83->5050/tcp     pgadmin

Quick links

If you are running all the containers, you can use these links to move around:

If you are interested in running locally without the large container image, you can run the broker and database stack with docker containers for simulating a more production-ready environment. Here's the containers these steps will start:

  1. Postgres 10
  2. Redis (Pub/Sub, Caching and Celery Tasks)
  3. pgAdmin4 - Web app for managing Postgres

Here's how to run it:

  1. Source the environment

    source envs/drf-dev.env
    
  2. Start the Stack

    ./run-stack.sh
    Starting stack: full-stack-dev.yml
    Creating postgres ... done
    Creating pgadmin ...
    Creating postgres ...
    
  3. Verify the containers are running

    docker ps
    CONTAINER ID        IMAGE                       COMMAND                  CREATED             STATUS              PORTS                                                                                                       NAMES
    2c7cfbd9328e        postgres:10.2-alpine        "docker-entrypoint.s…"   3 minutes ago       Up 3 minutes        0.0.0.0:5432->5432/tcp                                                                                      postgres
    9c34c9588349        jayjohnson/pgadmin4:1.0.0   "python ./usr/local/…"   3 minutes ago       Up 3 minutes        0.0.0.0:83->5050/tcp                                                                                        pgadmin
    75e325113424        redis:4.0.5-alpine          "docker-entrypoint.s…"   3 minutes ago       Up 3 minutes        0.0.0.0:6379->6379/tcp                                                                                      redis
    
  4. Initialize the Postgres database

    export USE_ENV=drf-dev
    ./run-migrations.sh
    
  5. Login to pgAdmin4

    http://localhost:83/browser/

    User: [email protected] Password: postgres

  6. Register the Postgres server

    1. Right click on "Servers" and then "Create Server"

    2. On the "General" tab enter a name like "webapp"

    3. On the "Connection" tab enter:

      Host: postgres

      Username: postgres

      Password: postgres

    4. Click "Save password?" check box

    5. Click the "Save" button

    6. Navigate down the tree:

      Servers > webapp (or the name you entered) > Databases > webapp > Schemas > public > Tables

    7. Confirm there's database tables with names like:

      pipeline_mljob
      pipeline_mljobresult
      pipeline_mlprepare
      

Start

By default, this project uses gunicorn to start, but you can change to uwsgi by running export APP_SERVER=uwsgi before starting. Both app servers should work just fine.

Note: if you are running the docker "full stack" please make sure to run: export USE_ENV=drf-dev before starting the django application, or you can use run-django.sh which should do the same as start.sh.

./start.sh

Starting Django listening on TCP port 8010
http://localhost:8010/swagger

[2018-02-07 11:27:20 -0800] [10418] [INFO] Starting gunicorn 19.7.1
[2018-02-07 11:27:20 -0800] [10418] [INFO] Listening at: http://127.0.0.1:8010 (10418)
[2018-02-07 11:27:20 -0800] [10418] [INFO] Using worker: sync
[2018-02-07 11:27:20 -0800] [10418] [INFO] DJANGO_DEBUG=yes - auto-reload enabled
[2018-02-07 11:27:20 -0800] [10418] [INFO] Server is ready. Spawning workers
[2018-02-07 11:27:20 -0800] [10422] [INFO] Booting worker with pid: 10422
[2018-02-07 11:27:20 -0800] [10422] [INFO] Worker spawned (pid: 10422)
[2018-02-07 11:27:20 -0800] [10423] [INFO] Booting worker with pid: 10423
[2018-02-07 11:27:20 -0800] [10423] [INFO] Worker spawned (pid: 10423)
[2018-02-07 11:27:20 -0800] [10424] [INFO] Booting worker with pid: 10424
[2018-02-07 11:27:20 -0800] [10424] [INFO] Worker spawned (pid: 10424)
[2018-02-07 11:27:20 -0800] [10426] [INFO] Booting worker with pid: 10426
[2018-02-07 11:27:20 -0800] [10426] [INFO] Worker spawned (pid: 10426)
[2018-02-07 11:27:20 -0800] [10430] [INFO] Booting worker with pid: 10430
[2018-02-07 11:27:20 -0800] [10430] [INFO] Worker spawned (pid: 10430)

Celery Worker

Start the Worker

Start the Celery worker in a new terminal to process published Django work tasks for heavyweight, time-intensive operations.

./run-worker.sh

Create User

Create the user trex with password 123321:

source tests/users/user_1.sh \
&& ./tests/create-user.sh \
&& env | grep API | sort

Creating user: trex on http://localhost:8010/users/
{"id":2,"username":"trex","email":"[email protected]"}
Getting token for user: trex
{"token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjo2LCJ1c2VybmFtZSI6InRyZXgiLCJleHAiOjE1MjgyNjExMjgsImVtYWlsIjoiYnVnc0BhbnRpbmV4LmNvbSJ9.W6Lb2N1v8S3e6EMT7RuTvfUQMTbKjrmYzhMxtFQ9jhk"}
API_DEBUG=false
[email protected]
API_FIRSTNAME=Guest
API_LASTNAME=Guest
API_PASSWORD=123321
API_URL=http://localhost:8010
API_USER=trex
API_VERBOSE=true

Automation

All of these scripts run in the tests directory:

cd tests

Make sure the virtual environment has been loaded:

source ~/.venvs/venvdrfpipeline/bin/activate

Clone the datasets repository

git clone https://github.com/jay-johnson/network-pipeline-datasets /opt/antinex/datasets

Prepare a new Dataset from Captured Recordings

./build-new-dataset.py

Train a Keras Deep Neural Network with Tensorflow

./create-keras-dnn.py

...

2018-02-03 00:31:24,342 - create-keras-dnn - INFO - SUCCESS - Post Response status=200 reason=OK
2018-02-03 00:31:24,342 - create-keras-dnn - INFO - {'job': {'id': 1, 'user_id': 2, 'user_name': 'trex', 'title': 'Keras DNN - network-pipeline==1.0.9', 'desc': 'Tensorflow backend with simulated data', 'ds_name': 'cleaned', 'algo_name': 'dnn', 'ml_type': 'keras', 'status': 'initial', 'control_state': 'active', 'predict_feature': 'label_value', 'training_data': {}, 'pre_proc': {}, 'post_proc': {}, 'meta_data': {}, 'tracking_id': 'ml_701552d5-c761-4c69-9258-00d05ff81a48', 'version': 1, 'created': '2018-02-03 08:31:17', 'updated': '2018-02-03 08:31:17', 'deleted': ''}, 'results': {'id': 1, 'user_id': 2, 'user_name': 'trex', 'job_id': 1, 'status': 'finished', 'version': 1, 'acc_data': {'accuracy': 83.7837837300859}, 'error_data': None, 'created': '2018-02-03 08:31:24', 'updated': '2018-02-03 08:31:24', 'deleted': ''}}

Create a Highly Accurate Deep Neural Network for Protecting Django

This is the same API request the core uses to build the Django DNN with an accuracy of 99.8%:

https://github.com/jay-johnson/antinex-core#accuracy-and-prediction-report

with Notebook:

https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb

./create-keras-dnn.py -f ./scaler-full-django-antinex-simple.json

Please wait... this can take a few minutes

...

2018-03-21 06:04:48,314 - ml_tasks - INFO - saving job=83 results
2018-03-21 06:04:50,387 - ml_tasks - INFO - updating job=83 results=83
2018-03-21 06:04:53,957 - ml_tasks - INFO - task - ml_job - done - ml_job.id=83 ml_result.id=83 accuracy=99.81788079470199 predictions=30200

Train and Predict with just a Dictionary List of Records

This will send a list of records to the API to train and make predictions. This mimics the live-prediction capability in the core for reusing pre-trained DNNs to make predictions faster. I use it to send the newest records to predict, so I do not have to generate lots of csv files everywhere + all-the-time.

./create-keras-dnn.py -f ./predict-rows-scaler-full-django.json

Train and Predict using the AntiNex Core

This will train and cache a deep neural network using the AntiNex Core. Once trained, the core can make future predictions with the same API call without having to retrain. This makes predictions much faster.

./create-keras-dnn.py -f only-publish-scaler-full-django.json

The core trains a deep neural network and persists it in a dictionary that uses the label value on the request to store the trained model. Future predictions must continue to reuse the same label value on the request to avoid waiting for a retraining cycle. Here is the label value used in the previous request which is:

"label": "Full-Django-AntiNex-Simple-Scaler-DNN"

Make Predictions for a List of Records

If you have a list of records the API, Worker and Core support making predictions for each record in a list.

Predict using the AntiNex Worker:

./create-keras-dnn.py -f predict-rows-scaler-full-django.json

Predict using the AntiNex Core:

./create-keras-dnn.py -f only-publish-predict-rows-simple.json

Advanced Naming for Multi-Tenant Environments

Problems will happen if multiple users are sharing the same host's /tmp/ directory with the default naming conventions. To prevent issues, it is recommended to change the output dataset directory to separate directories per user and to make sure the directories are accessible by the Django server processes. Here's an example of changing the output directory to my user which triggers the custom name detection. This detection means I will see logs for the training command to run with my newly generated dataset and metadata files:

mkdir /opt/jay
export OUTPUT_DIR=/opt/jay/
./build-new-dataset.py

...

Train a Neural Network with:
./create-keras-dnn.py /opt/jay/cleaned_attack_scans.csv /opt/jay/cleaned_metadata.json

If changing the output directory is not possible, then users will need to make sure the file names are unique before running. Here's an example naming strategy for the csv datasets and metadata files to prevent collisions. The build-new-dataset.py script will also suggest the training command to run when you activate custom names:

Prepare a Named Dataset

./build-new-dataset.py /tmp/<MyFirstName>_$(date +"%Y-%m-%d-%H-%m-%N")_full.csv /tmp/<MyFirstName>_$(date +"%Y-%m-%d-%H-%m-%N")_readytouse.csv

Example that shows the suggested training command to run using the named dataset files on disk:

./build-new-dataset.py /tmp/jay_$(date +"%Y-%m-%d-%H-%m-%N")_full.csv /tmp/jay_$(date +"%Y-%m-%d-%H-%m-%N")_readytouse.csv

...

Train a Neural Network with:
./create-keras-dnn.py /tmp/jay_2018-02-05-21-02-274468596_readytouse.csv /tmp/cleaned_meta-54525d8da8a54e9d9005a29c63f2918b.json

Confirm the files were created:

ls -lrth /tmp/jay_2018-02-05-21-02-274468596_readytouse.csv /tmp/cleaned_meta-54525d8da8a54e9d9005a29c63f2918b.json
-rw-rw-r-- 1 jay jay 143K Feb  5 21:23 /tmp/jay_2018-02-05-21-02-274468596_readytouse.csv
-rw-rw-r-- 1 jay jay 1.8K Feb  5 21:23 /tmp/cleaned_meta-54525d8da8a54e9d9005a29c63f2918b.json

Please note, if you use filenames and set the OUTPUT_DIR environment variable, the environment variable takes priority (even if you specify /path/to/some/dir/uniquename.csv). The dataset and metadata files will be stored in the OUTPUT_DIR directory:

echo $OUTPUT_DIR
/opt/jay/

./build-new-dataset.py jay_$(date +"%Y-%m-%d-%H-%m-%N")_full.csv jay_$(date +"%Y-%m-%d-%H-%m-%N")_readytouse.csv

...

Train a Neural Network with:
./create-keras-dnn.py /opt/jay/jay_2018-02-05-22-02-521671337_readytouse.csv /opt/jay/cleaned_meta-2b961845162a4d6e9e382c6f540302fe.json

Swagger

Create a User

http://localhost:8010/swagger/#!/users/users_create

Click on the yellow Example Value section to paste in defaults or paste in your version of:

{
    "username": "trex",
    "password": "123321",
    "email": "[email protected]"
}

Login User

If you want to login as the super user:

  • Username: trex
  • Password: 123321

http://localhost:8010/api-auth/login/

Logout User

http://localhost:8010/swagger/?next=/swagger/#!/accounts/accounts_logout_create

JWT

Get a Token

This will validate authentication with JWT is working:

./get_user_jwt_token.sh
{"token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjo0LCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTc1OTg3NTIsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.ip3Lj5o4SCK4TARlDuLyw-Dc6qMkt8xUx8WsQwIn2uo"}

(Optional) If you have jq installed:

./get_user_jwt_token.sh | jq
{
  "token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjo0LCJ1c2VybmFtZSI6InJvb3QiLCJleHAiOjE1MTc1OTg3NDEsImVtYWlsIjoicm9vdEBlbWFpbC5jb20ifQ.WAIatDGkeFJbH6LL_4rRQaAydZXcE8j0KK7dBnA2GJU"
}

http://localhost:8010/swagger/?next=/swagger/#!/ml/ml_run_create

Development

Swagger Prepare a new Dataset from Captured Recordings

http://localhost:8010/swagger/#!/mlprepare/mlprepare_create

Paste in the following values and click Try it Out:

{
    "title": "Prepare new Dataset from recordings",
    "desc": "",
    "ds_name": "new_recording",
    "full_file": "/tmp/fulldata_attack_scans.csv",
    "clean_file": "/tmp/cleaned_attack_scans.csv",
    "meta_suffix": "metadata.json",
    "output_dir": "/tmp/",
    "ds_dir": "/opt/antinex/datasets",
    "ds_glob_path": "/opt/antinex/datasets/*/*.csv",
    "pipeline_files": {
        "attack_files": []
    },
    "meta_data": {},
    "post_proc": {
        "drop_columns": [
            "src_file",
            "raw_id",
            "raw_load",
            "raw_hex_load",
            "raw_hex_field_load",
            "pad_load",
            "eth_dst",
            "eth_src",
            "ip_dst",
            "ip_src"
        ],
        "predict_feature": "label_name"
    },
    "label_rules": {
        "set_if_above": 85,
        "labels": [
            "not_attack",
            "attack"
        ],
        "label_values": [
            0,
            1
        ]
    },
    "version": 1
}

Swagger Train a Keras Deep Neural Network with Tensorflow

http://0.0.0.0:8010/swagger/#!/ml/ml_create

Paste in the following values and click Try it Out:

  1. Build the Django DNN for Predicting Network Attacks

    {
        "label": "Full-Django-AntiNex-Simple-Scaler-DNN",
        "dataset": "/opt/antinex/antinex-datasets/v1/webapps/django/training-ready/v1_django_cleaned.csv",
        "ml_type": "classification",
        "predict_feature": "label_value",
        "features_to_process": [
            <list of comma separated column names>
        ],
        "ignore_features": [
            <optional list of comma separated column names>
        ],
        "sort_values": [
            <optional list of comma separated column names>
        ],
        "seed": 42,
        "test_size": 0.2,
        "batch_size": 32,
        "epochs": 15,
        "num_splits": 2,
        "loss": "binary_crossentropy",
        "optimizer": "adam",
        "metrics": [
            "accuracy"
        ],
        "histories": [
            "val_loss",
            "val_acc",
            "loss",
            "acc"
        ],
        "model_desc": {
            "layers": [
                {
                    "num_neurons": 200,
                    "init": "uniform",
                    "activation": "relu"
                },
                {
                    "num_neurons": 1,
                    "init": "uniform",
                    "activation": "sigmoid"
                }
            ]
        },
        "label_rules": {
            "labels": [
                "not_attack",
                "not_attack",
                "attack"
            ],
            "label_values": [
                -1,
                0,
                1
            ]
        },
        "version": 1
    }
    
  2. Prototyping with a List of Records

    I use this script to convert a configurable number of records from the bottom of a csv file which helps build these type of prediction json files:

    https://github.com/jay-johnson/antinex-core/blob/master/antinex_core/scripts/convert_bottom_rows_to_json.py

    ./create-keras-dnn.py -f ./readme-predict-demo-1.json
    

    Here are the contents of ./tests/readme-predict-demo-1.json

    {
        "label": "Prediction-Model-Prototyping",
        "predict_rows": [
            {
                "_dataset_index": 1,
                "label_value": 1,
                "more_keys": 54.0
            },
            {
                "_dataset_index": 2,
                "label_value": 1,
                "more_keys": 24.0
            },
            {
                "_dataset_index": 2,
                "label_value": 0,
                "more_keys": 33.0
            }
        ],
        "ml_type": "classification",
        "predict_feature": "label_value",
        "features_to_process": [
            "more_keys"
        ],
        "ignore_features": [
        ],
        "sort_values": [
        ],
        "seed": 42,
        "test_size": 0.2,
        "batch_size": 32,
        "epochs": 15,
        "num_splits": 2,
        "loss": "binary_crossentropy",
        "optimizer": "adam",
        "metrics": [
            "accuracy"
        ],
        "histories": [
            "val_loss",
            "val_acc",
            "loss",
            "acc"
        ],
        "model_desc": {
            "layers": [
                {
                    "num_neurons": 200,
                    "init": "uniform",
                    "activation": "relu"
                },
                {
                    "num_neurons": 1,
                    "init": "uniform",
                    "activation": "sigmoid"
                }
            ]
        },
        "label_rules": {
            "labels": [
                "not_attack",
                "not_attack",
                "attack"
            ],
            "label_values": [
                -1,
                0,
                1
            ]
        },
        "version": 1
    }
    
  3. Deprecated - Using just CSV files

    {
        "csv_file": "/tmp/cleaned_attack_scans.csv",
        "meta_file": "/tmp/cleaned_metadata.json",
        "title": "Keras DNN - network-pipeline==1.0.9",
        "desc": "Tensorflow backend with simulated data",
        "ds_name": "cleaned",
        "algo_name": "dnn",
        "ml_type": "keras",
        "predict_feature": "label_value",
        "training_data": "{}",
        "pre_proc": "{}",
        "post_proc": "{}",
        "meta_data": "{}",
        "version": 1
    }
    

Verify the Celery Worker Processes a Task without Django

I find the first time I integrate Celery + Django + Redis can be painful. So I try to validate Celery tasks work before connecting Celery to Django over a message broker (like Redis). Here is a test tool for helping debug this integration with the celery-loaders project. It's also nice not having to click through the browser to debug a new task.

  1. Run the task test script

    ./run-celery-task.py -t drf_network_pipeline.users.tasks.task_get_user -f tests/celery/task_get_user.json
    2018-06-05 22:41:39,426 - run-celery-task - INFO - start - run-celery-task
    2018-06-05 22:41:39,426 - run-celery-task - INFO - connecting Celery=run-celery-task broker=redis://localhost:6379/9 backend=redis://localhost:6379/10 tasks=['drf_network_pipeline.users.tasks']
    2018-06-05 22:41:39,427 - get_celery_app - INFO - creating celery app=run-celery-task tasks=['drf_network_pipeline.users.tasks']
    2018-06-05 22:41:39,470 - run-celery-task - INFO - app.broker_url=redis://localhost:6379/9 calling task=drf_network_pipeline.users.tasks.task_get_user data={'celery_enabled': True, 'cache_key': None, 'use_cache': False, 'data': {'user_id': 2}}
    2018-06-05 22:41:39,535 - run-celery-task - INFO - calling task=drf_network_pipeline.users.tasks.task_get_user - started job_id=4931e1fc-3610-4259-8ccd-5724a1c50c79
    2018-06-05 22:41:39,549 - run-celery-task - INFO - calling task=drf_network_pipeline.users.tasks.task_get_user - success job_id=4931e1fc-3610-4259-8ccd-5724a1c50c79 task_result={'status': 0, 'err': '', 'task_name': '', 'data': {'id': 2, 'username': 'trex', 'email': '[email protected]'}, 'celery_enabled': True, 'use_cache': False, 'cache_key': None}
    2018-06-05 22:41:39,549 - run-celery-task - INFO - end - run-celery-task
    
  2. Verify the Celery Worker Processed the Task

    If Redis and Celery are working as expected, the logs should print something similar to the following:

    2018-06-06 05:41:39,535 - celery.worker.strategy - INFO - Received task: drf_network_pipeline.users.tasks.task_get_user[4931e1fc-3610-4259-8ccd-5724a1c50c79]
    2018-06-06 05:41:39,537 - user_tasks - INFO - task - task_get_user - start req_node={'celery_enabled': True, 'cache_key': None, 'use_cache': False, 'data': {'user_id': 2}}
    2018-06-06 05:41:39,537 - user_tasks - INFO - finding user=2 cache=False
    2018-06-06 05:41:39,539 - celery.worker.request - DEBUG - Task accepted: drf_network_pipeline.users.tasks.task_get_user[4931e1fc-3610-4259-8ccd-5724a1c50c79] pid:26
    2018-06-06 05:41:39,547 - user_tasks - INFO - found user.id=2 name=trex
    2018-06-06 05:41:39,547 - user_tasks - INFO - task - task_get_user result={'status': 0, 'err': '', 'task_name': '', 'data': {'id': 2, 'username': 'trex', 'email': '[email protected]'}, 'celery_enabled': True, 'use_cache': False, 'cache_key': None} - done
    2018-06-06 05:41:39,550 - celery.app.trace - INFO - Task drf_network_pipeline.users.tasks.task_get_user[4931e1fc-3610-4259-8ccd-5724a1c50c79] succeeded in 0.013342023004952352s: {'status': 0, 'err': '', 'task_name': '', 'data': {'id': 2, 'username': 'trex', 'email': '[email protected]'}, 'celery_enabled': True, 'use_cache': False, 'cache_key': None}
    

Additional Legacy Client API Tools

These tools and examples were created before the AntiNex Python Client was released. Please use that for official API examples.

Get a Prepared Dataset

export PREPARE_JOB_ID=1
./get-a-prepared-dataset.py

Get an ML Job

Any trained Keras Deep Neural Network models are saved as an ML Job.

export JOB_ID=1
./get-a-job.py

Get an ML Job Result

export JOB_RESULT_ID=1
./get-a-result.py

Get Recent Prepared Datasets

./get-recent-datasets.py

Get Recent ML Jobs

./get-recent-jobs.py

Get Recent ML Job Results

This is nice for reviewing historical accuracy as your tune your models.

./get-recent-results.py

Run Tests

The unit tests can be run:

./run-tests.sh

...

PASSED - unit tests

Or run a single test

source envs/dev.env; cd webapp; source ~/.venvs/venvdrfpipeline/bin/activate
python manage.py test drf_network_pipeline.tests.test_ml.MLJobTest

Multi-Tenant Simulations

Simulations run from the ./tests/ directory.

cd tests

Run the default user1 simulation in a new terminal:

./run-user-sim.py

In a new terminal start user2 simulation:

./run-user-sim.py user2

In a new terminal start user3 simulation:

./run-user-sim.py user3

Want to check how many threads each process is using?

It appears that either Keras or Tensorflow are using quite a bit of threads behind the scenes. On Ubuntu you can view the number of threads used by gunicorn or uwsgi with these commands:

ps -o nlwp $(ps awuwx | grep django | grep -v grep | awk '{print $2}')

If you're running uwsgi instead of the gunicorn use:

ps -o nlwp $(ps awuwx | grep uwsgi | grep -v grep | awk '{print $2}')

Stop Full Stack

If you are running the "full stack", then you can run this command to stop the docker containers:

./stop-stack.sh

Testing

  1. Set up the Testing Runtime and Environment Variables

    source ~/.venvs/venvdrfpipeline/bin/activate
    source ./envs/dev.env
    
  2. Change to the webapp directory

    Tests need to run in the same directory as the manage.py

    cd webapp
    
  3. Run all Tests

    python manage.py test
    
  4. Run all Test Cases in a Test module

    python manage.py test drf_network_pipeline.tests.test_ml
    
  5. Run a Single Test Case

    python manage.py test drf_network_pipeline.tests.test_ml.MLJobTest.test_ml_predict_helper_works
    

    or

    python manage.py test drf_network_pipeline.tests.test_user.AccountsTest.test_create_user_with_invalid_email
    

Linting

flake8 .

pycodestyle --exclude=.tox,.eggs,migrations

License

Apache 2.0 - Please refer to the LICENSE for more details

Citations and Included Works

Special thanks to these amazing projects for helping make this easier!

Original Django project template from

https://github.com/jpadilla/django-project-template

Django REST Framework

https://github.com/encode/django-rest-framework

Celery

http://www.celeryproject.org/

User Registration

https://github.com/szopu/django-rest-registration

Swagger for Django

https://github.com/marcgibbons/django-rest-swagger

JWT for Django REST

https://github.com/GetBlimp/django-rest-framework-jwt

Keras

https://github.com/keras-team/keras

Tensorflow

https://github.com/tensorflow

SQLite

https://www.sqlite.org/index.html

Gunicorn

http://docs.gunicorn.org/

uWSGI

https://uwsgi-docs.readthedocs.io/en/latest/

pgAdmin

https://www.pgadmin.org/

PostgreSQL

https://www.postgresql.org/

Django Cacheops

https://github.com/Suor/django-cacheops