Official implementation of "SQLdepth: Generalizable Self-Supervised Fine-Structured Monocular Depth Estimation" [AAAI 2024], and more.
2023.09.28 One paper accepted by AAAI 2024!
2023.09.03 Submitted the preprint of SQLdepth to Arxiv.
- release code for training in outdoor scenes (KITTI, Cityscapes)
- model release (KITTI, Cityscapes)
- code for training in indoor scenes (NYU-Depth-v2, MannequinChallenge)
- code for finetuning self-supervised model using metric depth
- model release for indoor scenes and metric fine-tuned model
To train on KITTI, run:
python train.py ./args_files/args_res50_kitti_192x640_train.txt
For instructions on downloading the KITTI dataset, see Monodepth2
To train on CityScapes, run:
python train.py ./args_files/args_cityscapes_train.txt
To finetune on CityScapes, run:
python train.py ./args_files/args_cityscapes_finetune.txt
For preparing cityscapes dataset, please refer to SfMLearner's prepare_train_data.py script. We used the following command:
python prepare_train_data.py \
--img_height 512 \
--img_width 1024 \
--dataset_dir <path_to_downloaded_cityscapes_data> \
--dataset_name cityscapes \
--dump_root <your_preprocessed_cityscapes_path> \
--seq_length 3 \
--num_threads 8
You can download weights for some pretrained models here:
Methods | WxH | abs rel | RMSE |
---|---|---|---|
KITTI (ResNet-50) | 640x192 | 0.088 | 4.175 |
KITTI (ResNet-50) | 1024x320 | 0.082 | 3.914 |
KITTI (Efficient-b5) | 1024x320 | 0.080 | 3.777 |
CityScapes (ResNet-50) | 512x192 | 0.106 | 6.237 |
KITTI (ConvNeXt-L) | 1024x320 | 0.043 | 1.698 |
To evaluate a model on KITTI, run:
python evaluate_depth_config.py args_files/hisfog/kitti/resnet_320x1024.txt
Make sure you have first run export_gt_depth.py
to extract ground truth files.
To evaluate the ConvNeXt-L model (fine-tuned using metric depth), run:
python3 ./finetune/evaluate_metric_depth.py ./finetune/txt_args/eval/eval_kitti.txt ./conf/cvnXt.txt
And to evaluate a model on Cityscapes, run:
python ./tools/evaluate_depth_cityscapes_config.py args_files/args_res50_cityscapes_finetune_192x640_eval.txt
The ground truth depth files for Cityscapes can be found at HERE,
Download this and unzip into splits/cityscapes
.
To get ground truth depth for KITTI, run:
python export_gt_depth.py --data_path kitti_data --split eigen
python export_gt_depth.py --data_path kitti_data --split eigen_benchmark
python test_simple_SQL_config.py ./args_files/args_test_simple_kitti_320x1024.txt
All rights reserved. Please see the license file for terms.