A multimodal large-scale model, characterized by its open-source nature, closely emulates the functionalities of the GPT4V/Qwen-VL-Plus model. Built upon the foundation of Qwen-72b-Chat, CatVision in handling inputs that combine both images and text. This model is designed to effectively follow instructions for output formats, benefiting from the strengths of Qwen72b.
一个开源多模态大模型,紧密模拟了GPT4V/Qwen-VL-PLUS系列模型的功能。该模型建立在Qwen-72b-Chat的基础上,可以处理包含交错的图文输入。该模型从Qwen72b的优势中受益,旨在有效地遵循输出格式指令。
Our model performs close to the closed-source Qwen-VL-PLUS on many datasets and significantly surpasses the performance of the open-source model Qwen-VL-7B-Chat.
我们的模型在很多数据集上,接近闭源的Qwen-VL-PLUS的效果,并大幅超过开源模型Qwen-VL-7B-Chat的效果。
- Our training approach consisted of two stages, inspired by LLava1.5. In the initial stage, we trained the visual encoder + perceptual resampler, and in the second stage, we focused on training the large language model + perceptual resampler with instructional data. To overcome limited computational resources (32xA100-80G), we used Lora for training in both stages.
受LLava1.5启发,我们的训练分为两个阶段:在初始阶段,我们训练了视觉编码器+感知重采样器;在第二阶段,我们专注于使用视觉指令数据训练大型语言模型+感知重采样器。为了克服有限的计算资源(32xA100-80G),我们在两个阶段都使用了Lora进行培训。
- During the first stage, our training data included samples from ShareGPT4V and CC12M. As we progressed to the second stage, our training dataset encompassed ShareGPT4V fine-tune data, LVIS Instruct4V, OCR data, InforGraphics/Chart QA data, and data sourced from region descriptions in VG.
在第一阶段,我们的训练数据包括来自ShareGPT4V和CC12M的样本。第二阶段,我们的训练数据集包括ShareGPT4V微调数据、LVIS Instruct4V、OCR数据、信息图表问答数据以及从VG区域描述中获取的数据。
- The visual encoding part is inherited from Qwen-VL-Chat, i.e., Openclip ViT-bigG.
视觉编码部分继承自Qwen-VL-Chat,即Openclip ViT-bigG。
- We are continuously collecting instruction data, optimizing the model, and looking forward to supporting more tasks.
我们正在持续收集指令数据,优化模型,期待能支持更多的功能。
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path="huizhang0110/CatVision",
model_max_length=8192,
padding_side="left",
trust_remote_code=True
)
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path="huizhang0110/CatVision",
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path="huizhang0110/CatVision",
config=config,
device_map="auto",
trust_remote_code=True
).eval()
query = "<img>demo.jpg</img>\n介绍一下这张图像!"
response, history = model.chat(
tokenizer,
query=query,
history=None,
)
Our model achieved favorable results on the many leaderboards.
Model | Val (900) | Test (11K) |
---|---|---|
Gemini Ultra | 59.4 | ---- |
GPT4V | 56.8 | 55.7 |
Gemini Pro | 47.9 | ---- |
Yi-VL-34B | 45.9 | 41.6 |
Qwen-VL-PLUS | 45.2 | 40.8 |
CatVision | 45.9 | 40.1 |
Macro-VL | 41.2 | 40.4 |
InfiMM-Zephyr-7B | 39.4 | 35.5 |
Yi-VL-6B | 39.1 | 37.8 |
SVIT | 38.0 | 34.1 |
LLaVA-1.5-13B | 36.4 | 33.6 |
Emu2-Chat | 36.3 | 34.1 |
Qwen-VL-7B-Chat | 35.9 | 32.9 |
Model | Val (900) | Test (11K) |
---|---|---|
GPT-4V(ision) (Playground) | 42.5 | 43.7 |
Qwen-VL-PLUS* | 39.5 | 36.8 |
CatVision | 39.6 | ---- |
Yi-VL-34B | 36.2 | 36.5 |
Yi-VL-6B | 35.8 | 35.0 |
Qwen-VL-7B-Chat | 30.7 | 31.3 |
InternVL-Chat-ViT-6B-Vicuna-7B | 26.4 | 26.7 |
InternVL-Chat-ViT-6B-Vicuna-13B | 27.4 | 26.1 |
CogAgent-Chat | 24.6 | 23.6 |
Emu2-Chat | 23.8 | 24.5 |
Chinese-LLaVA | 25.5 | 23.4 |
VisCPM | 25.2 | 22.7 |
mPLUG-OWL2 | 20.8 | 22.2 |
Frequent Choice | 24.1 | 26.0 |
Random Choice | 21.6 | 21.6 |
Model | mmbench_cn (test) | mmbench_cn (dev) | mmbench_en (test) | mmbench_zh (dev) | ccbench |
---|---|---|---|---|---|
Qwen-VL-PLUS(BASE) | 83.3 | 83.2 | 82.7 | 81.5 | 77.6 |
GPT4v | 77.0 | 75.1 | 74.4 | 75.0 | 46.5 |
Qwen-VL-PLUS | 67.0 | 66.2 | 70.7 | 69.6 | 55.1 |
CatVision | 70.9 | 71.8 | 70.2 | 71.6 | 49.8 |
Qwen-VL-Chat | 61.8 | 60.6 | 56.3 | 56.7 | 41.2 |
Model | Perception | Cognition |
---|---|---|
GPT4v | 1409.43 | 517.14 |
Qwen-VL-PLUS | 1681.25 | 502.14 |
CatVision | 1560.90 | 366.43 |
Qwen-VL-Chat | 1487.57 | 360.71 |
- Open Compress
wait
- Show Case
图像描述
信息图表
区域理解
@misc{CatVision,
author = {[email protected]},
title = {CatVision},
year = {2024},
publisher = {huggingface},
howpublished = {\url{https://huggingface.co/huizhang0110/CatVision}}
}