Skip to content

Lane Lines Detection using Python and OpenCV for self-driving car

Notifications You must be signed in to change notification settings

huang45/Lane-Lines-Detection-Python-OpenCV

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lane Line Detection using Python and OpenCV

Overview

This project aims to detect lane lines based on the view of vehicle mounted camera using OpenCV.

Demo video

Original Result

Camera Calibration

import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import glob
%matplotlib inline
def cal_undistort(img, objpoints, imgpoints):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None,None)
    undist = cv2.undistort(img, mtx, dist, None, mtx)
    return undist, mtx, dist

def collect_callibration_points():
    objpoints = []
    imgpoints = []

    images = glob.glob('./camera_cal/calibration*.jpg')
    objp = np.zeros((6*9,3), np.float32)
    objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1, 2)

    for fname in images:
        img = mpimg.imread(fname)

        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)

        if ret == True:
            imgpoints.append(corners)
            objpoints.append(objp)

    return imgpoints, objpoints

def compare_images(image1, image2, image1_exp="Image 1", image2_exp="Image 2"):
    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
    f.tight_layout()
    ax1.imshow(image1)
    ax1.set_title(image1_exp, fontsize=50)
    ax2.imshow(image2)
    ax2.set_title(image2_exp, fontsize=50)
    plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)


imgpoints, objpoints = collect_callibration_points()
img = mpimg.imread('./camera_cal/calibration3.jpg')
undistorted, mtx, dist_coefficients = cal_undistort(img, objpoints, imgpoints)
#compare_images(img, undistorted, "Original Image", "Undistorted Image")

image_path = './test_images/straight_lines1.jpg'
image = mpimg.imread(image_path)
image, mtx, dist_coefficients = cal_undistort(image, objpoints, imgpoints)

Gradient Thresholds

def abs_sobel_thresh(image, orient='x', sobel_kernel=3, thresh=(0, 255)):
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    isX = True if orient == 'x' else False
    sobel = cv2.Sobel(gray, cv2.CV_64F, isX, not isX)
    abs_sobel = np.absolute(sobel)
    scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
    grad_binary = np.zeros_like(scaled_sobel)
    grad_binary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1

    return grad_binary

def mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
    sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
    abs_sobel = np.sqrt(sobelx**2 + sobely**2)
    scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
    mag_binary = np.zeros_like(scaled_sobel)
    mag_binary[(scaled_sobel >= mag_thresh[0]) & (scaled_sobel <= mag_thresh[1])] = 1

    return mag_binary

def dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi/2)):
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
    sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
    abs_sobelx = np.absolute(sobelx)
    abs_sobely = np.absolute(sobely)
    grad_dir = np.arctan2(abs_sobely, abs_sobelx)
    dir_binary = np.zeros_like(grad_dir)
    dir_binary[(grad_dir >= thresh[0]) & (grad_dir <= thresh[1])] = 1

    return dir_binary

def apply_thresholds(image, ksize=3):
    gradx = abs_sobel_thresh(image, orient='x', sobel_kernel=ksize, thresh=(20, 100))
    grady = abs_sobel_thresh(image, orient='y', sobel_kernel=ksize, thresh=(20, 100))
    mag_binary = mag_thresh(image, sobel_kernel=ksize, mag_thresh=(30, 100))
    dir_binary = dir_threshold(image, sobel_kernel=ksize, thresh=(0.7, 1.3))

    combined = np.zeros_like(dir_binary)
    combined[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1

    return combined

combined = apply_thresholds(image)
compare_images(image, combined, "Original Image", "Gradient Thresholds")

png

Color Threshold

def apply_color_threshold(image):
    hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
    s_channel = hls[:,:,2]
    s_thresh_min = 170
    s_thresh_max = 255
    s_binary = np.zeros_like(s_channel)
    s_binary[(s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)] = 1

    return s_binary


s_binary = apply_color_threshold(image)
compare_images(image, s_binary, "Original Image", "Color Threshold")

png

Combine Color and Gradient

def combine_threshold(s_binary, combined):
    combined_binary = np.zeros_like(combined)
    combined_binary[(s_binary == 1) | (combined == 1)] = 1

    return combined_binary


combined_binary = combine_threshold(s_binary, combined)
compare_images(image, combined_binary, "Original Image", "Gradient and Color Threshold")

png

Perspective Transform

def warp(img):
    img_size = (img.shape[1], img.shape[0])

    src = np.float32(
        [[685, 450],
          [1090, 710],
          [220, 710],
          [595, 450]])

    dst = np.float32(
        [[900, 0],
          [900, 710],
          [250, 710],
          [250, 0]])

    M = cv2.getPerspectiveTransform(src, dst)
    Minv = cv2.getPerspectiveTransform(dst, src)

    binary_warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR)

    return binary_warped, Minv

def compare_plotted_images(image1, image2, image1_exp="Image 1", image2_exp="Image 2"):
    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
    f.tight_layout()
    ax1.imshow(image1)
    ax1.plot([685, 1090], [450, 710], color='r', linewidth="5")
    ax1.plot([1090, 220], [710, 710], color='r', linewidth="5")
    ax1.plot([220, 595], [710, 450], color='r', linewidth="5")
    ax1.plot([595, 685], [450, 450], color='r', linewidth="5")
    ax1.set_title(image1_exp, fontsize=50)
    ax2.imshow(image2)
    ax2.plot([900, 900], [0, 710], color='r', linewidth="5")
    ax2.plot([900, 250], [710, 710], color='r', linewidth="5")
    ax2.plot([250, 250], [710, 0], color='r', linewidth="5")
    ax2.plot([250, 900], [0, 0], color='r', linewidth="5")
    ax2.set_title(image2_exp, fontsize=50)
    plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)


warped, Minv = warp(image)
compare_plotted_images(image, warped, "Original Image", "Warped Image")

png

Finding the Lines

Histogram

def get_histogram(binary_warped):
    histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)

    return histogram


binary_warped, Minv = warp(combined_binary)
histogram = get_histogram(binary_warped)
plt.plot(histogram)
[<matplotlib.lines.Line2D at 0x10b551898>]

png

Sliding Window

def slide_window(binary_warped, histogram):
    out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
    midpoint = np.int(histogram.shape[0]/2)
    leftx_base = np.argmax(histogram[:midpoint])
    rightx_base = np.argmax(histogram[midpoint:]) + midpoint

    nwindows = 9
    window_height = np.int(binary_warped.shape[0]/nwindows)
    nonzero = binary_warped.nonzero()
    nonzeroy = np.array(nonzero[0])
    nonzerox = np.array(nonzero[1])
    leftx_current = leftx_base
    rightx_current = rightx_base
    margin = 100
    minpix = 50
    left_lane_inds = []
    right_lane_inds = []

    for window in range(nwindows):
        win_y_low = binary_warped.shape[0] - (window+1)*window_height
        win_y_high = binary_warped.shape[0] - window*window_height
        win_xleft_low = leftx_current - margin
        win_xleft_high = leftx_current + margin
        win_xright_low = rightx_current - margin
        win_xright_high = rightx_current + margin
        cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),
        (0,255,0), 2)
        cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),
        (0,255,0), 2)
        good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
        (nonzerox >= win_xleft_low) &  (nonzerox < win_xleft_high)).nonzero()[0]
        good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
        (nonzerox >= win_xright_low) &  (nonzerox < win_xright_high)).nonzero()[0]
        left_lane_inds.append(good_left_inds)
        right_lane_inds.append(good_right_inds)
        if len(good_left_inds) > minpix:
            leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
        if len(good_right_inds) > minpix:        
            rightx_current = np.int(np.mean(nonzerox[good_right_inds]))

    left_lane_inds = np.concatenate(left_lane_inds)
    right_lane_inds = np.concatenate(right_lane_inds)

    leftx = nonzerox[left_lane_inds]
    lefty = nonzeroy[left_lane_inds]
    rightx = nonzerox[right_lane_inds]
    righty = nonzeroy[right_lane_inds]

    left_fit = np.polyfit(lefty, leftx, 2)
    right_fit = np.polyfit(righty, rightx, 2)

    ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
    left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
    right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]

    out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
    out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]

    plt.imshow(out_img)
    plt.plot(left_fitx, ploty, color='yellow')
    plt.plot(right_fitx, ploty, color='yellow')
    plt.xlim(0, 1280)
    plt.ylim(720, 0)

    return ploty, left_fit, right_fit

ploty, left_fit, right_fit = slide_window(binary_warped, histogram)

png

Skipping Slinding Window

def skip_sliding_window(binary_warped, left_fit, right_fit):
    nonzero = binary_warped.nonzero()
    nonzeroy = np.array(nonzero[0])
    nonzerox = np.array(nonzero[1])
    margin = 100
    left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy +
    left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) +
    left_fit[1]*nonzeroy + left_fit[2] + margin)))

    right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy +
    right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) +
    right_fit[1]*nonzeroy + right_fit[2] + margin)))  

    leftx = nonzerox[left_lane_inds]
    lefty = nonzeroy[left_lane_inds]
    rightx = nonzerox[right_lane_inds]
    righty = nonzeroy[right_lane_inds]
    left_fit = np.polyfit(lefty, leftx, 2)
    right_fit = np.polyfit(righty, rightx, 2)
    ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
    left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
    right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]


    ################################
    ## Visualization
    ################################

    out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
    window_img = np.zeros_like(out_img)
    out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
    out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]

    left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])
    left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin,
                                  ploty])))])
    left_line_pts = np.hstack((left_line_window1, left_line_window2))
    right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])
    right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin,
                                  ploty])))])
    right_line_pts = np.hstack((right_line_window1, right_line_window2))

    cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
    cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
    result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)

    plt.imshow(result)
    plt.plot(left_fitx, ploty, color='yellow')
    plt.plot(right_fitx, ploty, color='yellow')
    plt.xlim(0, 1280)
    plt.ylim(720, 0)

    ret = {}
    ret['leftx'] = leftx
    ret['rightx'] = rightx
    ret['left_fitx'] = left_fitx
    ret['right_fitx'] = right_fitx
    ret['ploty'] = ploty

    return ret

draw_info = skip_sliding_window(binary_warped, left_fit, right_fit)

png

Measuring Curvature

def measure_curvature(ploty, lines_info):
    ym_per_pix = 30/720
    xm_per_pix = 3.7/700

    leftx = lines_info['left_fitx']
    rightx = lines_info['right_fitx']

    leftx = leftx[::-1]  
    rightx = rightx[::-1]  

    y_eval = np.max(ploty)
    left_fit_cr = np.polyfit(ploty*ym_per_pix, leftx*xm_per_pix, 2)
    right_fit_cr = np.polyfit(ploty*ym_per_pix, rightx*xm_per_pix, 2)
    left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
    right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
    print(left_curverad, 'm', right_curverad, 'm')

    return left_curverad, right_curverad

left_curverad, right_curverad = measure_curvature(ploty, draw_info)
21233.5680677 m 1293.63478872 m

Drawing

def draw_lane_lines(original_image, warped_image, Minv, draw_info):
    leftx = draw_info['leftx']
    rightx = draw_info['rightx']
    left_fitx = draw_info['left_fitx']
    right_fitx = draw_info['right_fitx']
    ploty = draw_info['ploty']

    warp_zero = np.zeros_like(warped_image).astype(np.uint8)
    color_warp = np.dstack((warp_zero, warp_zero, warp_zero))

    pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
    pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
    pts = np.hstack((pts_left, pts_right))

    cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))

    newwarp = cv2.warpPerspective(color_warp, Minv, (original_image.shape[1], original_image.shape[0]))
    result = cv2.addWeighted(original_image, 1, newwarp, 0.3, 0)

    return result


result = draw_lane_lines(image, binary_warped, Minv, draw_info)
plt.imshow(result)
<matplotlib.image.AxesImage at 0x10bf5e748>

png

Defining image processing method

global used_warped
global used_ret

def process_image(image):
    global used_warped
    global used_ret

    #Undistort image
    image, mtx, dist_coefficients = cal_undistort(image, objpoints, imgpoints)

    # Gradient thresholding
    gradient_combined = apply_thresholds(image)

    # Color thresholding
    s_binary = apply_color_threshold(image)

    # Combine Gradient and Color thresholding
    combined_binary = combine_threshold(s_binary, gradient_combined)

    # Transforming Perspective
    binary_warped, Minv = warp(combined_binary)

    # Getting Histogram
    histogram = get_histogram(binary_warped)

    # Sliding Window to detect lane lines
    ploty, left_fit, right_fit = slide_window(binary_warped, histogram)

    # Skipping Sliding Window
    ret = skip_sliding_window(binary_warped, left_fit, right_fit)

    # Measuring Curvature
    left_curverad, right_curverad = measure_curvature(ploty, ret)

     # Sanity check: whether the lines are roughly parallel and have similar curvature
    slope_left = ret['left_fitx'][0] - ret['left_fitx'][-1]
    slope_right = ret['right_fitx'][0] - ret['right_fitx'][-1]
    slope_diff = abs(slope_left - slope_right)
    slope_threshold = 150
    curve_diff = abs(left_curverad - right_curverad)
    curve_threshold = 10000

    if (slope_diff > slope_threshold or curve_diff > curve_threshold):
        binary_warped = used_warped
        ret = used_ret

    # Visualizing Lane Lines Info
    result = draw_lane_lines(image, binary_warped, Minv, ret)

    # Annotating curvature
    fontType = cv2.FONT_HERSHEY_SIMPLEX
    curvature_text = 'The radius of curvature = ' + str(round(left_curverad, 3)) + 'm'
    cv2.putText(result, curvature_text, (30, 60), fontType, 1.5, (255, 255, 255), 3)

    # Annotating deviation
    deviation_pixels = image.shape[1]/2 - abs(ret['right_fitx'][-1] - ret['left_fitx'][-1])
    xm_per_pix = 3.7/700
    deviation = deviation_pixels * xm_per_pix
    direction = "left" if deviation < 0 else "right"
    deviation_text = 'Vehicle is ' + str(round(abs(deviation), 3)) + 'm ' + direction + ' of center'
    cv2.putText(result, deviation_text, (30, 110), fontType, 1.5, (255, 255, 255), 3)

    used_warped = binary_warped
    used_ret = ret

    return result

#result_image = process_image(image)
#plt.imshow(result_image)

Applying to Video

import imageio
imageio.plugins.ffmpeg.download()
from moviepy.editor import VideoFileClip
from IPython.display import HTML
output = 'result.mp4'
clip = VideoFileClip("project_video.mp4")
video_clip = clip.fl_image(process_image)
%time video_clip.write_videofile(output, audio=False)

About

Lane Lines Detection using Python and OpenCV for self-driving car

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%