Mite is a load testing framework with distributed components written in Python. Requests are executed asynchronously, allowing large throughput from relatively small infrastructure.
python3 -m venv ~/.virtualenvs/mite
source ~/.virtualenvs/mite/bin/activate
pip install -r requirements.txt
This requires that you have libcurl installed on your system (including C header files for development, which are often distributed separately from the shared libraries). On Ubuntu, this can be accomplished with the command:
sudo apt install libcurl4 libcurl4-openssl-dev
(NB we recommend using a version of libcurl linked against openssl rather than gnutls, since the latter has memory leak problems)
You can also use the dockerfile included in this repository to run mite. In order to get a shell in a container with mite installed, run these commands (assuming you have docker installed on your machine):
docker build -t mite .
docker run --rm -it mite sh
Run mite --help
for a full list of commands
Acurl is currently in the process of being migrated to a new implementation under the name acurl_ng
(will be changed back in the second phase) which is currently turned off by default. To enable the new acurl implementation during tests, you will need to set the following flag: MITE_CONF_enable_new_acurl_implementation=true
Scenarios are a combination of 3 things, a set of journeys to run, a datapool to provide test data for the journey (if applicable), and a volume model.
Journeys are async python functions, and are where you put the logic of what you're trying to achieve. Below is a simple example:
import asyncio
async def journey(ctx, arg1, arg2):
async with ctx.transaction('test1'):
ctx.send('test_message', content=ctx.config.get('test_msg', 'Not set'), sum=arg1 + arg2)
await asyncio.sleep(0.5)
This journey just sends a log message to be collected by the framework and waits for half a second. This journey takes 3 arguments, a context and two numbers (which will be supplied by the datapool, see below).
The context is important for every journey. It provides a number of useful methods for timing/naming of transactions, sending messages and defaults to including http functionality from acurl. Functionality can be included in the journey by attaching it to the context.
In the above example we see an example of naming a transaction async with ctx.transaction('test1'):
. This will capture timing for the
indented block.
We also see that the config is attached to the context with
ctx.config.get('test_msg', 'Not set')
and in this case, the value of
that config value is sent to the log collector with
ctx.send('test_message', content=ctx.config.get('test_msg', 'Not set'))
To feed data into your test journey, you'll need a datapool. Several of
these are already provided in mite and usually read data in from an
iterable. To specify a custom datapool implementation, you simply need a
class that implements a checkin
method which adds data to the pool and
a checkout
method which removes data from the pool to be used by
journeys.
For the above journey, which expects two arguments, we will show an example of the RecyclableIterableDataPool.
from mite.datapools import RecyclableIterableDataPool
datapool = RecyclableIterableDataPool([(i, i+2) for i in range(5000)])
This pool will share data out to runners and check it back in when the runners are done with that block of data. In this case it cycles through a list of tuples which each contain two integers.
A volume model defines how many instances of the journey should be ran
within a window of time. The window is definied as a start and an end
time (measured in seconds since the beginning of the test), which will be
fed to the model by the framework. This allows complex calculations to
specify the current volume based on the current time. The volume model
can also raise StopScenario
to inform mite that the load injection
should stop for a given journey. For this example we'll use a simple
volume model which merely runs ten journeys simultaneously, forever.
volumemodel = lambda start, end: 10
We now need to package the journey, datapool and volume model into a scenario. This is a simple as defining a function which returns a list of triplets of (journey name, datapool, volumemodel).
def scenario():
return [
['mite.example:journey', datapool, volumemodel],
]
The journey name should be a string with two parts separated by a colon. The first part is the name of a python module that is importable; the second is the name of a journey (an async function) within that module. It is necessary to specify this as a string, rather than as a python object, because the journey will be executed in a different python process than the scenario function is. Thus, we need a name for the journey that allows any python process to find it.
The volume model and data pool, on the other hand, are only used in the python process where the scenario function runs. They are both python objects.
Before running the scenario, we should test the journey in isolation as
a scenario can be made up of multiple journeys. This can be done with
the mite journey test
command. We just need to pass the name of the
journey and the datapool it requires:
MITE_CONF_test_msg="Hello from mite" mite journey test mite.example:journey mite.example:datapool
If something goes wrong, adding the --debugging
flag to this command
will drop excution into a debug session. The choice of debugger used can be
managed by setting the PYTHONBREAKPOINT
environment variable
before running mite. Python's built-in pdb)
debugger is invoked by default, but this can be changed to use, say, the
ipdb debugger:
pip install ipdb
export PYTHONBREAKPOINT=ipdb.set_trace
export PYTHONPOSTMORTEM=ipdb.post_mortem
PYTHONPOSTMORTEM
is a mite-specific extension to PEP
553 which defines the
PYTHONBREAKPOINT
functionality.
In order to run the finished scenario locally, which will include all the necessary fixtures, run the following command:
MITE_CONF_test_msg="Hello from mite" mite scenario test mite.example:scenario
In order to scale up miteʼs capability to inject load, you will need to run it as a distributed suite of components. You can learn more about how to accomplish this in the documentation.
Build mite image:
docker build -t mite .
Run mite deployments:
Use make
from mite/local
dir:
make up # start mite containers
make status # check status of mite containers
make clean # remove all mite containers
or
docker-compose -f docker_compose.yml up
For more information on distributed mite usage, info
If you run into any trouble or need support getting to grips with Mite, reach out on Slack if you work at Sky, or contact one of the maintainers if you're an external contributer:
Jordan Brennan 💻 |
Aaron Ecay 💻 |
Davide Annunziata 💻 |
Arron Canham 💻 |
---|
Special thanks to the following contributors: