forked from princewen/tensorflow_practice
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
shixiaowen03
committed
Dec 23, 2018
1 parent
772c0dd
commit 9937c07
Showing
10 changed files
with
1,351 additions
and
138 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,294 @@ | ||
"""Main DQN agent.""" | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
from PIL import Image | ||
import random | ||
from huberLoss import mean_huber_loss, weighted_huber_loss | ||
|
||
EPSILON_BEGIN = 1.0 | ||
EPSILON_END = 0.1 | ||
BETA_BEGIN = 0.5 | ||
BETA_END = 1.0 | ||
|
||
class DQNAgent(): | ||
def __init__(self, | ||
eval_model, | ||
target_model, | ||
memory, | ||
num_actions, | ||
gamma, | ||
update_freq, | ||
target_update_freq, | ||
update_target_params_ops, | ||
batch_size, | ||
is_double_dqn, | ||
is_per, | ||
is_distributional, | ||
num_step, | ||
is_noisy, | ||
learning_rate, | ||
rmsp_decay, | ||
rmsp_momentum, | ||
rmsp_epsilon): | ||
|
||
self._eval_model = eval_model | ||
self._target_model = target_model | ||
self._memory = memory | ||
self._num_actions = num_actions | ||
self._gamma = gamma | ||
self._update_freq = update_freq | ||
self._target_update_freq = target_update_freq | ||
self._update_target_params_ops = update_target_params_ops | ||
self._batch_size = batch_size | ||
self._is_double_dqn = is_double_dqn | ||
self._is_per = is_per | ||
self._is_distributional = is_distributional | ||
self._num_step = num_step | ||
self._is_noisy = is_noisy | ||
self._learning_rate = learning_rate | ||
self._rmsp_decay = rmsp_decay | ||
self._rmsp_momentum = rmsp_momentum | ||
self._rmsp_epsilon = rmsp_epsilon | ||
self._update_times = 0 | ||
self._beta = EPSILON_BEGIN | ||
self._beta_increment = (EPSILON_END-BETA_BEGIN)/2000000.0 | ||
self._epsilon = EPSILON_BEGIN if is_noisy else 0. | ||
self._epsilon_increment = (EPSILON_END - EPSILON_BEGIN)/2000000.0 if is_noisy==0 else 0. | ||
self._action_ph = tf.placeholder(tf.int32,[None,2],'action_ph') | ||
self._reward_ph = tf.placeholder(tf.float32,name='reward_ph') | ||
self._is_terminal_ph = tf.placeholder(tf.float32,name='is_terminal_ph') | ||
self._action_chosen_by_eval_ph = tf.placeholder(tf.int32,[None,2],'action_chosen_by_eval_ph') | ||
self._loss_weight_ph = tf.placeholder(tf.float32,name='loss_weight_ph') | ||
self._error_op,self._train_op = self._get_error_and_train_op(self._reward_ph,self._is_terminal_ph, | ||
self._action_ph,self._action_chosen_by_eval_ph, | ||
self._loss_weight_ph) | ||
|
||
|
||
def _get_error_and_train_op(self,reward_ph, | ||
is_terminal_ph, | ||
action_ph, | ||
action_chosen_by_eval_ph, | ||
loss_weight_ph): | ||
|
||
if self._is_distributional == 0: | ||
q_values_target = self._target_model['q_values'] | ||
q_values_eval = self._eval_model['q_values'] | ||
|
||
if self._is_double_dqn: | ||
max_q = tf.gather_nd(q_values_target,action_chosen_by_eval_ph) # 如果是double-dqn,动作由eval-net选出,q值由target-net得到 | ||
else: | ||
max_q = tf.reduce_max(q_values_target,axis=1) | ||
|
||
target = reward_ph + (1.0 - is_terminal_ph) * (self._gamma ** self._num_step) * max_q # 这里是多步的dqn | ||
gathered_outputs = tf.gather_nd(q_values_eval,action_ph,name='gathered_outputs') | ||
|
||
if self._is_per == 1: | ||
loss = weighted_huber_loss(target,gathered_outputs,loss_weight_ph) | ||
else: | ||
loss = mean_huber_loss(target,gathered_outputs) | ||
train_op = tf.train.RMSPropOptimizer(self._learning_rate,decay=self._rmsp_decay, | ||
momentum=self._rmsp_momentum,epsilon=self._rmsp_epsilon).minimize(loss) | ||
|
||
error_op = tf.abs(gathered_outputs - target,name='abs_error') | ||
return train_op,error_op | ||
|
||
else: | ||
N_atoms = 51 | ||
V_Max = 20.0 | ||
V_Min = 0.0 | ||
Delta_z = (V_Max - V_Min) / (N_atoms - 1) | ||
z_list = tf.constant([V_Min + i * Delta_z for i in range(N_atoms)], dtype=tf.float32) | ||
|
||
q_distributional_values_target = self._target_model['q_distributional_network'] # batch_size * num_actions * N_atoms | ||
tmp_batch_size = tf.shape(q_distributional_values_target)[0] # batch_size | ||
|
||
if self._is_double_dqn: | ||
q_distributional_chosen_by_action_target = tf.gather_nd(q_distributional_values_target,action_chosen_by_eval_ph) | ||
else: | ||
action_chosen_by_target_q = tf.cast(tf.argmax(self._target_model['q_values'], axis=1), tf.int32) | ||
q_distributional_chosen_by_action_target = tf.gather_nd(q_distributional_values_target, | ||
tf.concat([tf.reshape(tf.range(tmp_batch_size),[-1,1]), | ||
tf.reshape(action_chosen_by_target_q,[-1,1])],axis=1)) | ||
|
||
|
||
target = tf.tile(tf.reshape(reward_ph,[-1,1]),[1,N_atoms]) + \ | ||
(self._gamma * self._num_step) * \ | ||
tf.multiply(tf.reshape(z_list,[1,N_atoms]),(1.0 - tf.tile(tf.reshape(is_terminal_ph,[-1,1]),[1,N_atoms]))) | ||
|
||
target = tf.clip_by_value(target,V_Min,V_Max) | ||
|
||
b = (target - V_Min) / Delta_z | ||
|
||
u,l = tf.ceil(b),tf.floor(b) | ||
|
||
u_id,l_id = tf.cast(u,tf.int32),tf.cast(l,tf.int32) | ||
|
||
u_minus_b,b_minus_l = u - b,b - l | ||
q_distributional_values_eval = self._eval_model['q_distributional_network'] | ||
|
||
q_distributional_chosen_by_action_eval = tf.gather_nd(q_distributional_values_eval,action_ph) | ||
|
||
index_help = tf.tile(tf.reshape(tf.range(tmp_batch_size),[-1,1]),[1,N_atoms]) | ||
|
||
index_help = tf.expand_dims(index_help,-1) # batch * N_atoms * 1 | ||
u_id = tf.concat([index_help,tf.expand_dims(u_id,-1)],axis=2) | ||
l_id = tf.concat([index_help,tf.expand_dims(l_id,-1)],axis=2) | ||
|
||
error = q_distributional_chosen_by_action_target * u_minus_b * \ | ||
tf.log(tf.gather_nd(q_distributional_chosen_by_action_eval, l_id)) \ | ||
+ q_distributional_chosen_by_action_target * b_minus_l * \ | ||
tf.log(tf.gather_nd(q_distributional_chosen_by_action_eval, u_id)) | ||
error = tf.reduce_sum(error, axis=1) | ||
|
||
if self._is_per == 1: | ||
loss = tf.negative(error * loss_weight_ph) | ||
else: | ||
loss = tf.negative(error) | ||
|
||
train_op = tf.train.RMSPropOptimizer(self._learning_rate, | ||
decay=self._rmsp_decay, momentum=self._rmsp_momentum, | ||
epsilon=self._rmsp_epsilon).minimize(loss) | ||
error_op = tf.abs(error, name='abs_error') | ||
return error_op, train_op | ||
|
||
def select_action(self,sess,state,epsilon,model): | ||
batch_size = len(state) | ||
if np.random.rand() < epsilon: | ||
action = np.random.randint(0,self._num_actions,size=(batch_size,)) | ||
else: | ||
state = state.astype(np.float32) / 255.0 | ||
feed_dict = {model['input_frames'] :state} | ||
action = sess.run(model['action'],feed_dict=feed_dict) | ||
return action | ||
|
||
def get_multi_step_sample(self,env,sess,num_step,epsilon): | ||
old_state,action,reward,new_state,is_terminal = env.get_state() | ||
total_reward = np.sign(reward) | ||
total_is_terminal = is_terminal | ||
|
||
next_action = self.select_action(sess,new_state,epsilon,self._eval_model) | ||
env.take_action(next_action) | ||
|
||
for i in range(1,num_step): | ||
_,_,reward,new_state,is_terminal = env.get_state() | ||
total_reward += self._gamma ** i * np.sign(reward) | ||
total_is_terminal += is_terminal | ||
next_action = self.select_action(sess,new_state,epsilon,self._eval_model) | ||
env.take_action(next_action) | ||
|
||
return old_state,action,total_reward,new_state,np.sign(total_is_terminal) | ||
|
||
def fit(self,sess,env,num_iterations,do_train=True): | ||
|
||
num_environment = env.num_process | ||
env.reset() | ||
|
||
for t in range(0,num_iterations,num_environment): | ||
# 准备数据 | ||
old_state,action,reward,new_state,is_terminal = self.get_multi_step_sample(env,sess,self._num_step,self._epsilon) | ||
self._memory.append(old_state,action,reward,new_state,is_terminal) # 插入数据 | ||
if self._epsilon > EPSILON_END: | ||
self._epsilon += num_environment * self._epsilon_increment | ||
if do_train: | ||
num_update = sum([1 if i % self._update_freq == 0 else 0 for i in range(t, t + num_environment)]) | ||
# 抽取数据 | ||
for _ in range(num_update): | ||
if self._is_per == 1: | ||
(old_state_list, action_list, reward_list, new_state_list, is_terminal_list), \ | ||
idx_list, p_list, sum_p, count = self._memory.sample(self._batch_size) | ||
else: | ||
old_state_list, action_list, reward_list, new_state_list, is_terminal_list \ | ||
= self._memory.sample(self._batch_size) | ||
|
||
feed_dict = {self._target_model['input_frames']: new_state_list.astype(np.float32) / 255.0, | ||
self._eval_model['input_frames']: old_state_list.astype(np.float32) / 255.0, | ||
self._action_ph: list(enumerate(action_list)), | ||
self._reward_ph: np.array(reward_list).astype(np.float32), | ||
self._is_terminal_ph: np.array(is_terminal_list).astype(np.float32), | ||
} | ||
|
||
if self._is_double_dqn: | ||
action_chosen_by_online = sess.run(self._eval_model['action'], feed_dict={ | ||
self._eval_model['input_frames']: new_state_list.astype(np.float32)/255.0}) | ||
feed_dict[self._action_chosen_by_eval_ph] = list(enumerate(action_chosen_by_online)) | ||
|
||
if self._is_per == 1: | ||
# Annealing weight beta | ||
feed_dict[self._loss_weight_ph] = (np.array(p_list)*count/sum_p)**(-self._beta) | ||
error, _ = sess.run([self._error_op, self._train_op], feed_dict=feed_dict) | ||
self._memory.update(idx_list, error) | ||
else: | ||
sess.run(self._train_op, feed_dict=feed_dict) | ||
|
||
self._update_times += 1 | ||
if self._beta < BETA_END: | ||
self._beta += self._beta_increment | ||
|
||
if self._update_times%self._target_update_freq == 0: | ||
sess.run(self._update_target_params_ops) | ||
|
||
|
||
def _get_error(self, sess, old_state, action, reward, new_state, is_terminal): | ||
''' | ||
Get TD error for Prioritized Experience Replay | ||
''' | ||
feed_dict = {self._target_model['input_frames']: new_state.astype(np.float32)/255.0, | ||
self._eval_model['input_frames']: old_state.astype(np.float32)/255.0, | ||
self._action_ph: list(enumerate(action)), | ||
self._reward_ph: np.array(reward).astype(np.float32), | ||
self._is_terminal_ph: np.array(is_terminal).astype(np.float32), | ||
} | ||
|
||
if self._is_double_dqn: | ||
action_chosen_by_online = sess.run(self._eval_model['action'], feed_dict={ | ||
self._eval_model['input_frames']: new_state.astype(np.float32)/255.0}) | ||
feed_dict[self._action_chosen_by_eval_ph] = list(enumerate(action_chosen_by_online)) | ||
|
||
error = sess.run(self._error_op, feed_dict=feed_dict) | ||
return error | ||
|
||
def get_mean_max_Q(self, sess, samples): | ||
mean_max = [] | ||
INCREMENT = 1000 | ||
for i in range(0, len(samples), INCREMENT): | ||
feed_dict = {self._eval_model['input_frames']: | ||
samples[i: i + INCREMENT].astype(np.float32)/255.0} | ||
mean_max.append(sess.run(self._eval_model['mean_max_Q'], | ||
feed_dict = feed_dict)) | ||
return np.mean(mean_max) | ||
|
||
|
||
def evaluate(self, sess, env, num_episode): | ||
"""Evaluate num_episode games by online model. | ||
Parameters | ||
---------- | ||
sess: tf.Session | ||
env: batchEnv.BatchEnvironment | ||
This is your paralleled Atari environment. | ||
num_episode: int | ||
This is the number of episode of games to evaluate | ||
Returns | ||
------- | ||
reward list for each episode | ||
""" | ||
num_environment = env.num_process | ||
env.reset() | ||
reward_of_each_environment = np.zeros(num_environment) | ||
rewards_list = [] | ||
|
||
num_finished_episode = 0 | ||
|
||
while num_finished_episode < num_episode: | ||
old_state, action, reward, new_state, is_terminal = env.get_state() | ||
action = self.select_action(sess, new_state, 0, self._eval_model) | ||
env.take_action(action) | ||
for i, r, is_t in zip(range(num_environment), reward, is_terminal): | ||
if not is_t: | ||
reward_of_each_environment[i] += r | ||
else: | ||
rewards_list.append(reward_of_each_environment[i]) | ||
reward_of_each_environment[i] = 0 | ||
num_finished_episode += 1 | ||
return np.mean(rewards_list), np.std(rewards_list) | ||
|
Oops, something went wrong.