Skip to content

Commit

Permalink
end 2 end memory network
Browse files Browse the repository at this point in the history
  • Loading branch information
princewen committed Jan 15, 2019
1 parent e3c343d commit 2d9c2ff
Show file tree
Hide file tree
Showing 4 changed files with 529 additions and 0 deletions.
122 changes: 122 additions & 0 deletions nlp/Basic-EEMN-Demo/data_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
import os
import re
import numpy as np

def load_task(data_dir, task_id, only_supporting=False):
'''Load the nth task. There are 20 tasks in total.
Returns a tuple containing the training and testing data for the task.
'''
assert task_id > 0 and task_id < 21

files = os.listdir(data_dir)
files = [os.path.join(data_dir, f) for f in files]
s = 'qa{}_'.format(task_id)
train_file = [f for f in files if s in f and 'train' in f][0]
test_file = [f for f in files if s in f and 'test' in f][0]
train_data = get_stories(train_file, only_supporting)
test_data = get_stories(test_file, only_supporting)
return train_data, test_data

def tokenize(sent):
'''Return the tokens of a sentence including punctuation.
>>> tokenize('Bob dropped the apple. Where is the apple?')
['Bob', 'dropped', 'the', 'apple', '.', 'Where', 'is', 'the', 'apple', '?']
'''
return [x.strip() for x in re.split('(\W+)?', sent) if x.strip()]


def parse_stories(lines, only_supporting=False):
'''Parse stories provided in the bAbI tasks format
If only_supporting is true, only the sentences that support the answer are kept.
'''
data = []
story = []
for line in lines:
line = str.lower(line)
nid, line = line.split(' ', 1)
nid = int(nid)
if nid == 1:
story = []
if '\t' in line: # question
q, a, supporting = line.split('\t')
q = tokenize(q)
#a = tokenize(a)
# answer is one vocab word even if it's actually multiple words
a = [a]
substory = None

# remove question marks
if q[-1] == "?":
q = q[:-1]

if only_supporting:
# Only select the related substory
supporting = map(int, supporting.split())
substory = [story[i - 1] for i in supporting]
else:
# Provide all the substories
substory = [x for x in story if x]

data.append((substory, q, a))
story.append('')
else: # regular sentence
# remove periods
sent = tokenize(line)
if sent[-1] == ".":
sent = sent[:-1]
story.append(sent)
return data


def get_stories(f, only_supporting=False):
'''Given a file name, read the file, retrieve the stories, and then convert the sentences into a single story.
If max_length is supplied, any stories longer than max_length tokens will be discarded.
'''
with open(f) as f:
return parse_stories(f.readlines(), only_supporting=only_supporting)

def vectorize_data(data, word_idx, sentence_size, memory_size):
"""
Vectorize stories and queries.
If a sentence length < sentence_size, the sentence will be padded with 0's.
If a story length < memory_size, the story will be padded with empty memories.
Empty memories are 1-D arrays of length sentence_size filled with 0's.
The answer array is returned as a one-hot encoding.
"""
S = []
Q = []
A = []
for story, query, answer in data:
ss = []
for i, sentence in enumerate(story, 1):
ls = max(0, sentence_size - len(sentence))
ss.append([word_idx[w] for w in sentence] + [0] * ls)

# take only the most recent sentences that fit in memory
ss = ss[::-1][:memory_size][::-1]

# Make the last word of each sentence the time 'word' which
# corresponds to vector of lookup table
for i in range(len(ss)):
ss[i][-1] = len(word_idx) - memory_size - i + len(ss)

# pad to memory_size
lm = max(0, memory_size - len(ss))
for _ in range(lm):
ss.append([0] * sentence_size)

lq = max(0, sentence_size - len(query))
q = [word_idx[w] for w in query] + [0] * lq

y = np.zeros(len(word_idx) + 1) # 0 is reserved for nil word
for a in answer:
y[word_idx[a]] = 1

S.append(ss)
Q.append(q)
A.append(y)
return np.array(S), np.array(Q), np.array(A)
122 changes: 122 additions & 0 deletions nlp/Basic-EEMN-Demo/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
from data_utils import load_task, vectorize_data
from sklearn import cross_validation, metrics
from memn2n import MemN2N
from itertools import chain
from six.moves import range, reduce

import tensorflow as tf
import numpy as np

tf.flags.DEFINE_float("learning_rate", 0.01, "Learning rate for SGD.")
tf.flags.DEFINE_float("anneal_rate", 25, "Number of epochs between halving the learnign rate.")
tf.flags.DEFINE_float("anneal_stop_epoch", 100, "Epoch number to end annealed lr schedule.")
tf.flags.DEFINE_float("max_grad_norm", 40.0, "Clip gradients to this norm.")
tf.flags.DEFINE_integer("evaluation_interval", 10, "Evaluate and print results every x epochs")
tf.flags.DEFINE_integer("batch_size", 32, "Batch size for training.")
tf.flags.DEFINE_integer("hops", 3, "Number of hops in the Memory Network.")
tf.flags.DEFINE_integer("epochs", 100, "Number of epochs to train for.")
tf.flags.DEFINE_integer("embedding_size", 20, "Embedding size for embedding matrices.")
tf.flags.DEFINE_integer("memory_size", 50, "Maximum size of memory.")
tf.flags.DEFINE_integer("task_id", 1, "bAbI task id, 1 <= id <= 20")
tf.flags.DEFINE_integer("random_state", None, "Random state.")
tf.flags.DEFINE_string("data_dir", "data/tasks_1-20_v1-2/en/", "Directory containing bAbI tasks")
FLAGS = tf.flags.FLAGS

print("Started Task:", FLAGS.task_id)

# task data
train, test = load_task(FLAGS.data_dir, FLAGS.task_id)
data = train + test

vocab = sorted(reduce(lambda x, y: x | y, (set(list(chain.from_iterable(s)) + q + a) for s, q, a in data)))
word_idx = dict((c, i + 1) for i, c in enumerate(vocab))

max_story_size = max(map(len, (s for s, _, _ in data)))
mean_story_size = int(np.mean([ len(s) for s, _, _ in data ]))
sentence_size = max(map(len, chain.from_iterable(s for s, _, _ in data)))
query_size = max(map(len, (q for _, q, _ in data)))
memory_size = min(FLAGS.memory_size, max_story_size)

# Add time words/indexes
for i in range(memory_size):
word_idx['time{}'.format(i+1)] = 'time{}'.format(i+1)

vocab_size = len(word_idx) + 1 # +1 for nil word
sentence_size = max(query_size, sentence_size) # for the position
sentence_size += 1 # +1 for time words

print("Longest sentence length", sentence_size)
print("Longest story length", max_story_size)
print("Average story length", mean_story_size)

# train/validation/test sets
S, Q, A = vectorize_data(train, word_idx, sentence_size, memory_size)
trainS, valS, trainQ, valQ, trainA, valA = cross_validation.train_test_split(S, Q, A, test_size=.1, random_state=FLAGS.random_state)
testS, testQ, testA = vectorize_data(test, word_idx, sentence_size, memory_size)

print(testS[0])

print("Training set shape", trainS.shape)

# params
n_train = trainS.shape[0]
n_test = testS.shape[0]
n_val = valS.shape[0]

print("Training Size", n_train)
print("Validation Size", n_val)
print("Testing Size", n_test)

train_labels = np.argmax(trainA, axis=1)
test_labels = np.argmax(testA, axis=1)
val_labels = np.argmax(valA, axis=1)

tf.set_random_seed(FLAGS.random_state)
batch_size = FLAGS.batch_size

batches = zip(range(0, n_train-batch_size, batch_size), range(batch_size, n_train, batch_size))
batches = [(start, end) for start, end in batches]

with tf.Session() as sess:
model = MemN2N(batch_size, vocab_size, sentence_size, memory_size, FLAGS.embedding_size, session=sess,
hops=FLAGS.hops, max_grad_norm=FLAGS.max_grad_norm)
for t in range(1, FLAGS.epochs+1):
# Stepped learning rate
if t - 1 <= FLAGS.anneal_stop_epoch:
anneal = 2.0 ** ((t - 1) // FLAGS.anneal_rate)
else:
anneal = 2.0 ** (FLAGS.anneal_stop_epoch // FLAGS.anneal_rate)
lr = FLAGS.learning_rate / anneal

np.random.shuffle(batches)
total_cost = 0.0
for start, end in batches:
s = trainS[start:end]
q = trainQ[start:end]
a = trainA[start:end]
cost_t = model.batch_fit(s, q, a, lr)
total_cost += cost_t

if t % FLAGS.evaluation_interval == 0:
train_preds = []
for start in range(0, n_train, batch_size):
end = start + batch_size
s = trainS[start:end]
q = trainQ[start:end]
pred = model.predict(s, q)
train_preds += list(pred)

val_preds = model.predict(valS, valQ)
train_acc = metrics.accuracy_score(np.array(train_preds), train_labels)
val_acc = metrics.accuracy_score(val_preds, val_labels)

print('-----------------------')
print('Epoch', t)
print('Total Cost:', total_cost)
print('Training Accuracy:', train_acc)
print('Validation Accuracy:', val_acc)
print('-----------------------')

test_preds = model.predict(testS, testQ)
test_acc = metrics.accuracy_score(test_preds, test_labels)
print("Testing Accuracy:", test_acc)
Loading

0 comments on commit 2d9c2ff

Please sign in to comment.