Skip to content

gourab9817/ByteCode

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Here’s the README which describes how to execute this project

# ByteCode Project

This project integrates machine learning models with a Flask-based web interface. It includes modules for general predictions using an LSTM model and a crop recommendation system.

## Table of Contents
- [Project Setup](#project-setup)
- [Installation](#installation)
- [Usage Instructions](#usage-instructions)
  - [Running the Main Prediction Model](#running-the-main-prediction-model)
  - [Running the Crop Recommendation Module](#running-the-crop-recommendation-module)
- [Technical Overview](#technical-overview)
- [Contributing](#contributing)
- [License](#license)

---

## Project Setup

1. **Clone the Repository**  
   Fork this repository or clone it directly:
   ```bash
   git clone https://github.com/gourab9817/ByteCode.git
  1. Install Dependencies
    Navigate to the project directory and install all dependencies:

    pip install -r requirements.txt
  2. Configure Data Paths

    • The ByteCode directory contains all data files, training and testing scripts, and Flask applications.
    • Update the path for dataset.csv in your code to match your local directory structure.

Usage Instructions

Running the Main Prediction Model

  1. Navigate to the flask_app Directory
    Change to the main Flask app directory:

    cd ByteCode/flask_app
  2. Start the Flask Application
    Run the following command to start the main Flask application:

    python app.py

    This will launch a server and display a route link in the terminal. Copy and paste this link into your web browser to access the application.

  3. Using the Web Interface

    • On the provided route link, you can enter values to get predictions from the trained LSTM model.

Running the Crop Recommendation Module

  1. Open a New Terminal
    To start the crop recommendation module, open a new terminal window.

  2. Navigate to the Crop Recommendation Directory
    Change to the crop_recommendation directory:

    cd ByteCode/crop_recommendation
  3. Start the Crop Recommendation Script
    Run the crop recommendation module:

    python crop_recommendation.py

    This module will also provide a route link. Use this link to access the crop recommendation web interface, where you can enter values for crop prediction and view results.


Technical Overview

  • Main Application (flask_app): Hosts the primary prediction model and web interface.
  • Models: Utilizes an LSTM model trained on datasets in the ByteCode directory.
  • Crop Recommendation Module: Provides crop-specific predictions based on various user inputs.

🤝 Contribution Guidelines

To contribute to this project:

  1. Fork the repository and create a feature branch:
    git checkout -b feature/YourFeature
  2. Commit your changes and push to your branch:
    git commit -m "Add feature description"
    git push origin feature/YourFeature
  3. Open a pull request for review.

License

Distributed under the MIT License. See LICENSE for more information.



This `.md` formatted file will render well on GitHub and provide clear instructions for setting up, using, and contributing to the ByteCode project.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published