Skip to content

A Keras implementation of YOLOv3 (Tensorflow backend)

License

Notifications You must be signed in to change notification settings

gotoERROR00111011/vehicle-recognition

 
 

Repository files navigation

vehicle recognition

YOLO v3 를 사용한 차량, 번호판 인식

Contents

  1. Background
  2. Install
  3. Maintainers
  4. Contributing
  5. License

Install

  • windows
    • CUDA9, cuDNN
  • python=3.6
    • keras=2.1.5
    • tensorflow=1.9
    • opencv
    • matplotlib
    • pillow
    • pydot
    • graphviz
  1. Data setting
    1. Download keras-yolo3
    2. Add ./CarPlate_dataset
    3. Run voc_annotation.py
  2. Train
    1. Add ./yolov3.weights YOLOv3-416 weights
    2. Run python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
    3. Run python train.py
    4. Move result ./logs -> ./model_data/yolo.h5
  3. Run
    1. Run python yolo_video.py --image

Dependencies

GPU : (GTX 1060 3GB), 100 epoch, 230 train

result

Maintainers

@gotoERROR00111011.

Contributing

Contributors

License

MIT License

About

A Keras implementation of YOLOv3 (Tensorflow backend)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%