├── README.md
├── requirements.txt
├── datasets
│ └── kaist-rgbt/ (see below explanation)
├── data
│ ├── ...
│ └── kaist-rgbt.yaml
├── models
│ ├── ...
│ ├── common.py
│ ├── yolo.py
│ ├── yolo5n_kaist-rgbt.yaml
│ └── yolo5s_kaist-rgbt.yaml
├── utils
│ ├── ...
│ ├── eval
│ │ ├── coco.py
│ │ ├── cocoeval.py
│ │ └── kaisteval.py
│ ├── dataloaders.py
│ └── loss.py
├── detect.py
├── debug_kaist.ipynb
├── val.py
└── train_simple.py
-
Prepare dataset (5.8GB, multispectral(visible + lwir) images with bbox labels)
$ wget https://hyu-aue8088.s3.ap-northeast-2.amazonaws.com/kaist-rgbt-aue8088.tar.gz $ tar xzvf kaist-rgbt-aue8088.tar.gz
-
Create python virtual environment
$ python3 -m venv venv/aue8088-project $ source venv/aue8088-project/bin/activate
-
Check whether the virtual environment set properly : The result should end with
venv/aue8088-project/bin/python
.$ which python
-
Clone base code repository (replace
ircvlab
toyour account
if you forked the repository)$ git clone -b project https://github.com/ircvlab/aue8088-pa2
If you already forked the above repository, then you can checkout to
project
branch.$ git fetch origin $ git checkout -b project origin/project
-
[!] Create a symbolic link for kaist-rgbt dataset
-
Assume the below folder structure
├── kaist-rgbt ├── aue8088-pa2 │ ├── data/ │ ├── models/ │ ├── train_simple.py │ ├── ... │ └── README.md (this file)
-
Follow below commands
$ cd aue8088-pa2 $ mkdir datasets $ ln -s $(realpath ../kaist-rgbt) datasets/kaist-rgbt $
-
-
Install required packages
$ pip install -r requirements.txt
- Command
$ python train_simple.py \ --img 640 \ --batch-size 16 \ --epochs 20 \ --data data/kaist-rgbt.yaml \ --cfg models/yolov5n_kaist-rgbt.yaml \ --weights yolov5n.pt \ --workers 16 \ --name yolov5n-rgbt \ --rgbt \ --single-cls
- On your labtop, go to the website:
http://166.104.168.170:8888/
- Only available in Hanyang internal network
- If you're not in campus, please use VPN (https://vpn.hanyang.ac.kr)
- It takes a day (or two) to get the permission from IT department.
- Sign up
- Send a message to me via LMS (then, I'll manually verify your account.)
- Go to
All Challenges
-Multispectral Pedestrian Detection Challenge
-Submit
- Upload your predictions on
test-all-20.txt
- If you run
train_simple.py
with the default setting, predictions ontest-all-20.txt
will be generated:runs/train/*/epoch*_predictions.json
- You can download this file onto your computer.
- Note: if size of the prediction file is too large (about > 30MB), evaluation on the server could be failed.
- If you run