Personal fork of the great KerasTuner: Original Repo. Feel free to try it out.
Check out to Codespace, or install locally:
pip install git+https://github.com/ghsanti/keras-tuner
pip install jax[cpu] # or tf, or torch.
Try example.py and see the results.
Main Changes
- Detailed results and type annotations (some.)Built-in algorithms:
Find the best parameters using the the built-in algorithms:- Bayesian Optimization,
- Hyperband,
- Random Search
or extend in order to experiment with new search algorithms.
Code Example
import keras_tuner
import keras
def build_model(hp):
model = keras.Sequential()
model.add(keras.layers.Dense(
hp.Choice('units', [8, 16, 32]),
activation='relu'))
model.add(keras.layers.Dense(1))
model.compile(loss='mse')
return model
tuner = keras_tuner.RandomSearch(
build_model,
objective='val_loss',
max_trials=5 # tries with the same parameters.
)
tuner.search(x_train, y_train, epochs=5, validation_data=(x_val, y_val))
best_model = tuner.get_best_models()[0]
Please refer to the CONTRIBUTING.md for the contributing guide.