Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Image #19

Merged
merged 2 commits into from
Nov 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/linux.yml
Original file line number Diff line number Diff line change
Expand Up @@ -32,5 +32,5 @@ jobs:
run: |
g++ examples/scalars.cpp -O3 --std=c++17
./a.out
g++ examples/xor_regression.cpp -O3 --std=c++17
g++ examples/xor.cpp -O3 --std=c++17
./a.out
2 changes: 1 addition & 1 deletion .github/workflows/macos.yml
Original file line number Diff line number Diff line change
Expand Up @@ -32,5 +32,5 @@ jobs:
run: |
g++ examples/scalars.cpp -O3 --std=c++17
./a.out
g++ examples/xor_regression.cpp -O3 --std=c++17
g++ examples/xor.cpp -O3 --std=c++17
./a.out
2 changes: 1 addition & 1 deletion .github/workflows/windows.yml
Original file line number Diff line number Diff line change
Expand Up @@ -30,4 +30,4 @@ jobs:
CXX: ${{matrix.conf.compiler}}
run: |
g++ -o out examples/scalars.cpp -O3 --std=c++17
g++ -o out examples/xor_regression.cpp -O3 --std=c++17
g++ -o out examples/xor.cpp -O3 --std=c++17
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
build/
datasets/

docs/html
docs/latex
Expand Down
2 changes: 1 addition & 1 deletion docs/tutorials/GetStarted.md
Original file line number Diff line number Diff line change
Expand Up @@ -233,7 +233,7 @@ for (size_t sample = 0; sample < xs.size(); ++sample) { // Go through ea
}
```

In case you got lost along the way, check out the `examples/xor_regression.cpp` file. It contains the exact same code and is ready to run :)
In case you got lost along the way, check out the `examples/xor.cpp` file. It contains the exact same code and is ready to run :)

### Results

Expand Down
2 changes: 1 addition & 1 deletion examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
To compile an example, simply run the following command:

```
g++ --std=c++17 xor_nn.cpp
g++ --std=c++17 xor.cpp
```

Remember to replace the file name with the appropriate name :)
Expand Down
79 changes: 79 additions & 0 deletions examples/mnist.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
#include <filesystem>
#include <iostream>

#include "../include/ShkyeraGrad.hpp"

namespace fs = std::filesystem;
using namespace shkyera;

Dataset<Vec32, Vec32> load(std::string directory) {
Dataset<Vec32, Vec32> dataset;

std::cerr << "Loading [" << std::flush;
for (size_t digit = 0; digit < 10; ++digit) {
std::cerr << "▮" << std::flush;
int added = 0;
for (const auto &entry : fs::directory_iterator(directory + std::to_string(digit))) {
Image image(entry.path().string());
auto target = Vec32::oneHotEncode(digit, 10);

dataset.addSample(image.flatten<Type::float32>() / 255.0f, target);
}
}
std::cerr << "]" << std::endl;

return dataset;
}

int main() {
Dataset<Vec32, Vec32> trainData = load("datasets/mnist/train/");
std::cerr << "Loaded training data." << std::endl;

DataLoader trainLoader(trainData, 16, true);

// clang-format off
auto mlp = SequentialBuilder32::begin()
.add(Linear32::create(784, 100))
.add(ReLU32::create())
.add(Linear32::create(100, 50))
.add(Sigmoid32::create())
.add(Linear32::create(50, 10))
.add(Softmax32::create())
.build();
// clang-format on

auto optimizer = Adam32(mlp->parameters(), 0.01, 0.99);
auto lossFunction = Loss::CrossEntropy<Type::float32>;

for (size_t epoch = 0; epoch < 50; epoch++) {
float epochLoss = 0;
double epochAccuracy = 0;

for (const auto [x, y] : trainLoader) {
optimizer.reset();

auto pred = mlp->forward(x);

double accuracy = 0;
for (size_t i = 0; i < pred.size(); ++i) {
size_t predictedDigit = pred[i].argMax();
size_t trueDigit = y[i].argMax();

if (predictedDigit == trueDigit)
accuracy += 1;
}

accuracy /= pred.size();
epochAccuracy += accuracy;

auto loss = Loss::compute(lossFunction, pred, y);
epochLoss = epochLoss + loss->getValue();

optimizer.step();

std::cerr << "Loss: " << loss->getValue() << " Accuracy: " << accuracy << std::endl;
}
std::cerr << "Epoch: " << epoch + 1 << " Loss: " << epochLoss / trainLoader.getTotalBatches()
<< " Accuracy: " << epochAccuracy / trainLoader.getTotalBatches() << std::endl;
}
}
File renamed without changes.
1 change: 1 addition & 0 deletions include/ShkyeraGrad.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@

#pragma once

#include "core/Image.hpp"
#include "core/Type.hpp"
#include "core/Utils.hpp"
#include "core/Value.hpp"
Expand Down
61 changes: 61 additions & 0 deletions include/core/Image.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
/**
* Copyright © 2023 Franciszek Szewczyk. None of the rights reserved.
* This code is released under the Beerware License. If you find this code useful or you appreciate the work, you are
* encouraged to buy the author a beer in return.
* Contact the author at [email protected] for inquiries and support.
*/

#pragma once

#include <string>
#include <vector>

#define STB_IMAGE_IMPLEMENTATION
#include "../external/stb_image.h"

#include "Vector.hpp"

namespace shkyera {

class Image {
private:
std::vector<uint8_t> _data;

public:
Image() = default;
Image(std::string filename, bool grayscale = true);

template <typename T> Vector<T> flatten(size_t takeEvery = 1) const;
};

Image::Image(std::string filename, bool grayscale) {
int width, height, channels;
uint8_t *imageData = nullptr;

if (grayscale)
imageData = stbi_load(filename.c_str(), &width, &height, &channels, 1);
else
imageData = stbi_load(filename.c_str(), &width, &height, &channels, 3);

if (!imageData) {
std::cerr << "Error loading image: " << filename << std::endl;
return;
}

if (grayscale)
_data.assign(imageData, imageData + (width * height));
else
_data.assign(imageData, imageData + (width * height * 3));

stbi_image_free(imageData);
}

template <typename T> Vector<T> Image::flatten(size_t takeEvery) const {
std::vector<T> converted;
converted.reserve(_data.size());
for (size_t i = 0; i < _data.size(); i += takeEvery)
converted.push_back(static_cast<T>(_data[i]));
return Vector<T>::of(converted);
}

} // namespace shkyera
5 changes: 5 additions & 0 deletions include/core/Value.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -238,6 +238,11 @@ template <typename T> void Value<T>::backward() {
for (auto val = sorted.rbegin(); val != sorted.rend(); val++) {
(*val)->_backward();
}

for (auto s : sorted) {
s->_children = {};
s->_backward = []() {};
}
}

template <typename T> std::ostream &operator<<(std::ostream &os, const ValuePtr<T> &value) {
Expand Down
28 changes: 28 additions & 0 deletions include/core/Vector.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
#pragma once

#include <exception>
#include <numeric>

#include "Type.hpp"
#include "Value.hpp"
Expand All @@ -30,10 +31,12 @@ template <typename T> class Vector {

static Vector<T> of(const std::vector<T> &values);
template <typename... Args> static Vector<T> of(const Args &...args);
static Vector<T> oneHotEncode(size_t index, size_t size);

ValuePtr<T> dot(const Vector<T> &other) const;
ValuePtr<T> sum() const;
size_t size() const;
size_t argMax() const;

template <typename U> friend std::ostream &operator<<(std::ostream &os, const Vector<U> &vector);

Expand Down Expand Up @@ -85,8 +88,33 @@ template <typename T> template <typename... Args> Vector<T> Vector<T>::of(const
return Vector<T>(valuePtrs);
}

template <typename T> Vector<T> Vector<T>::oneHotEncode(size_t index, size_t size) {
std::vector<ValuePtr<T>> valuePtrs(size);

for (size_t i = 0; i < size; ++i) {
if (i == index)
valuePtrs[i] = Value<T>::create(1);
else
valuePtrs[i] = Value<T>::create(0);
}

return valuePtrs;
}

template <typename T> size_t Vector<T>::size() const { return _values.size(); }

template <typename T> size_t Vector<T>::argMax() const {
T largest = std::numeric_limits<T>::lowest();
size_t largestIndex = 0;
for (size_t i = 0; i < _values.size(); ++i) {
if (_values[i]->getValue() > largest) {
largest = _values[i]->getValue();
largestIndex = i;
}
}
return largestIndex;
}

template <typename T> ValuePtr<T> Vector<T>::dot(const Vector<T> &other) const {
if (other.size() != size()) {
throw std::invalid_argument("Vectors need to be of the same size to compute the dot product. Sizes are " +
Expand Down
Loading
Loading