Skip to content

PyTorch implementation of Multi-Label Image Recognition with Graph Convolutional Networks, CVPR 2019.

Notifications You must be signed in to change notification settings

fovyu/ML_GCN

 
 

Repository files navigation

ML_GCN.pytorch

PyTorch implementation of Multi-Label Image Recognition with Graph Convolutional Networks, CVPR 2019.

Requirements

Please, install the following packages

  • numpy
  • torch-0.3.1
  • torchnet
  • torchvision-0.2.0
  • tqdm

Download pretrain models

checkpoint/coco (GoogleDrive)

checkpoint/voc (GoogleDrive)

or

Baidu

Options

  • lr: learning rate
  • lrp: factor for learning rate of pretrained layers. The learning rate of the pretrained layers is lr * lrp
  • batch-size: number of images per batch
  • image-size: size of the image
  • epochs: number of training epochs
  • evaluate: evaluate model on validation set
  • resume: path to checkpoint

Demo VOC 2007

python3 demo_voc2007_gcn.py data/voc --image-size 448 --batch-size 32 -e --resume checkpoint/voc/voc_checkpoint.pth.tar

Demo COCO 2014

python3 demo_coco_gcn.py data/coco --image-size 448 --batch-size 32 -e --resume checkpoint/coco/coco_checkpoint.pth.tar

Citing this repository

If you find this code useful in your research, please consider citing us:

@inproceedings{ML_GCN_CVPR_2019,
author = {Zhao-Min, Chen and Xiu-Shen, Wei and Peng, Wang and Yanwen, Guo},
title = {{Multi-Label Image Recognition with Graph Convolutional Networks}},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019}
}

Reference

This project is based on https://github.com/durandtibo/wildcat.pytorch

Tips

If you have any questions about our work, please do not hesitate to contact us by emails.

About

PyTorch implementation of Multi-Label Image Recognition with Graph Convolutional Networks, CVPR 2019.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%