Skip to content

Commit

Permalink
Merge branch 'update_deploying_docs' into 'master'
Browse files Browse the repository at this point in the history
docs: Update deploying-models.

See merge request ai/esp-dl!35
  • Loading branch information
sun-xiangyu committed May 20, 2024
2 parents ca99d1c + 7b81869 commit e90a88e
Show file tree
Hide file tree
Showing 6 changed files with 18 additions and 2 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ ESP-DL provides some model APIs in the [Model Zoo](./include/model_zoo), such as

## Deploy Your Own Models

We recommend using TVM to deploy your models, for details please refer to [ESP-DL/tutorial/tvm_example](tutorial/tvm_example).
For details please refer to [Manual Model Quantization and Deployment Guide](https://docs.espressif.com/projects/esp-dl/en/latest/esp32s3/tutorials/deploying-models.html).


## Feedback
Expand Down
2 changes: 1 addition & 1 deletion README_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ ESP-DL 在 [模型库](./include/model_zoo) 中提供了一些模型的 API,

## 部署你的模型

我们推荐使用 TVM 来部署你的模型,具体可参考 [ESP-DL/tutorial/tvm_example](tutorial/tvm_example)
具体可参考 [手动部署模型](https://docs.espressif.com/projects/esp-dl/zh_CN/latest/esp32s3/tutorials/deploying-models.html)


## 反馈
Expand Down
1 change: 1 addition & 0 deletions docs/en/tutorials/deploying-models-through-tvm.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ Auto-Generating Model Deployment Project using TVM
:link_to_translation:`zh_CN:[中文]`

This case introduces the complete process of deploying a model with TVM.
**This project is based on the TVM v0.14.0 branch and is in an experimental state, with no plans for further iteration or maintenance at the moment. Currently, only the conv2d operator from ESP-DL is integrated, and other operators may cause exceptions.**

Preparation
-----------
Expand Down
7 changes: 7 additions & 0 deletions docs/en/tutorials/deploying-models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,13 @@ Step 1: Convert Your Model

In order to be deployed, the trained floating-point model must be converted to an integer model, the format compatible with ESP-DL. Given that ESP-DL uses a different quantization scheme and element arrangements compared with other platforms, please convert your model with our :doc:`Quantization Toolkit Overview <../../tools/quantization-toolkit/quantization-toolkit-overview>`.

Currently, the operators supported by ESP-DL are as follows:

Conv2d, Gemm, Relu, AvgPool2d, MaxPool2d, Add, Mul, Sub, Softmax, Tanh,
Sigmoid, Concat, Expand, Flatten, Max, Min, Pad, Reshape, Squeeze, Transpose,
Slice, Shape, Resize


Step 1.1: Convert to ONNX Format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Expand Down
1 change: 1 addition & 0 deletions docs/zh_CN/tutorials/deploying-models-through-tvm.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
:link_to_translation:`en:[English]`

本案例介绍了使用 TVM 部署模型的完整流程。
**该项目基于 TVM v0.14.0 分支,处于试验状态,暂时没有进一步迭代维护的计划。目前仅对接了 ESP-DL 的 conv2d 算子,其它算子可能会引发异常。**

准备
----
Expand Down
7 changes: 7 additions & 0 deletions docs/zh_CN/tutorials/deploying-models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,13 @@

为了部署模型,必须将训练好的浮点模型转换为 ESP-DL 适配的整型模型格式。由于本库使用的量化方式和参数排列方式与一些平台不同,请使用我们提供的工具 :doc:`量化工具包 <../../tools/quantization-toolkit/quantization-toolkit-overview>` 来完成转换。

目前 ESP-DL 支持的算子如下:

Conv2d, Gemm, Relu, AvgPool2d, MaxPool2d, Add, Mul, Sub, Softmax, Tanh,
Sigmoid, Concat, Expand, Flatten, Max, Min, Pad, Reshape, Squeeze, Transpose,
Slice, Shape, Resize


步骤 1.1:转换为 ONNX 格式模型
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Expand Down

0 comments on commit e90a88e

Please sign in to comment.