Permutation-equivariant binary classification network for variable-sized point clouds based on the discriminator used in the EPiC-GAN.
Reference: EPiC-GAN - Equivariant Point Cloud Generation for Particle Jets (arXiv:2301:08128)
Packages used:
- pytorch
- numpy
- matplotlib
- sklearn
- comet_ml (for online logging)
Run the training for 10 epochs via:
#!/bin/bash
PARAMS=(
--epochs 10
--dataset_train TRAINING_SET
--dataset_val VALIDATION_SET
--dataset_test TEST_SET
--logdir ./
)
python train.py "${PARAMS[@]}"
Find additional settings via python train.py --help
or in the config.py file.
The dataloader expects the DATA_SETS to be in an .npz
format with the data
stored in the format [EVENTS, POINTS, FEATURES]
(using zero-padding for variable-sized point clouds) and labels
(0 or 1).