$ pip install -r requirements.txt
$ python setup.py install
This project includes a number of helpers in the Makefile
to streamline common development tasks.
The following demonstrates setting up and working with a development environment:
### create a virtualenv for development
$ make virtualenv
$ source env/bin/activate
### run svd cli application
$ svd --help
### run pytest / coverage
$ make test
Before releasing to PyPi, you must configure your login credentials:
~/.pypirc:
[pypi]
username = YOUR_USERNAME
password = YOUR_PASSWORD
Then use the included helper function via the Makefile
:
$ make dist
$ make dist-upload
Included is a basic Dockerfile
for building and distributing SVD
,
and can be built with the included make
helper:
$ make docker
$ docker run -it svd --help
In this example the working directory is the project directory:
$ cd project_root_path/svd
Curate dataset:
$ svd curate -d dataset/dataset.json -o dataset/prepare/dataset.json
Mine dataset:
$ svd mine -d dataset/prepare/dataset.json -o dataset/feature_models/ -nlp dataset/extracted_features/nlp_features/
Evaluate ML models:
$ svd evaluate -d dataset/prepare/dataset.csv -nlp dataset/extracted_features/nlp_features -rp dataset/results -mp dataset/models -t 8 -m KNN
Evaluate CNN model:
$ svd evaluate-cnn -d dataset/prepare/dataset.csv -mp dataset/models/cnn
Plot zipf-log:
$ svd zipf -d dataset/dataset.json
Plot histogram:
$ svd histogram -d dataset/dataset.json