🔥 🔥 This repository contains PyTorch implementation for our paper: Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks (ICML 2024) [Paper] [Poster].
đź“Ł 17 July 2024: We release 1st version of codebase.
We provide implementations for E(3)-invariant molecular conformer aggregation networks (ConAN) on a collection of six benchmark datasets related to molecular property prediction and molecular classification. Our model builds on state-of-the-art deep learning frameworks and is designed to be easily extensible and customizable.
The repository is structured as follows:
data/
: This directory contains scripts and utilities for downloading and preprocessing benchmark datasets.outputs/
: This directory contains processes' outcome including logs.models/
: This directory contains processes' outcome including checkpoints.conan_fgw/script
: This directory is intended to store experimental scripts.conan_fgw/src
: This directory contains the source code for training, evaluating, and visualizing models.conan_fgw/config
: This directory is intended to store experimental configurations.README.md
: This file contains information about the project, including installation instructions, usage examples, and a description of the repository structure.environment.yml
: This file lists all Python dependencies required to run the project..gitignore
: This file specifies which files and directories should be ignored by Git version control.
To re-produce this project, you will need to have the following dependencies installed:
- Ubuntu 18.04.6 LTS
- CUDA Version: 11
- Miniconda
- Python 3
- PyTorch (version 2.0 or later)
- PyTorch Geometric
Note: To check your CUDA version, use the following command:
nvidia-smi
the output should look like this:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.182.03 Driver Version: 470.182.03 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
After installing Miniconda, you can create a new environment and install the required packages using the following commands:
conda create -n conan python=3.9
conda activate conan
pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1
conda env update -n conan --file environment.yaml
To refer benchmark datasets, please get access this link and download here.
After finishing the download process, please put them into the directory /data
.
The project focuses on leveraging four MoleculeNet datasets: Esol, Lipo, FreeSolv, BACE, and two CoV-2 datasets. All relevant data is stored within the /data
directory. To configure the settings for each dataset, corresponding configuration files are provided in the conan_fgw/config/
folder.
To reproduce experiments, please refer:
bash conan_fgw/script/run.sh
For example, to experiment with ConAN using the SchNet network as the backbone on the Esol dataset, the script run.sh should be as follows:
First, define variables for the model, task, dataset, number of conformers, and number of runs:
## conan_fgw/script/run.sh
model=schnet ## Message Passing Backbone: schnet OR visnet
task=property_regression ## Molecular tasks: property_regression OR classification
ds=esol ## Dataset name
n_cfm_conan_fgw_pre=5 ## Number of conformers used in conan-fgw pretraining stage
n_cfm_conan_fgw=5 ## Number of conformers used in conan-fgw training stage
runs=5 ## Number of runs for general evaluation
Note: Please refer to the configurations for a certain experiment. They should be available at conan_fgw/config/<selected_model>/<molecular_task>/<dataset_name>
. In this case, there are two configuration YAML files named esol_5.yaml
and esol_5_bc.yaml
in the directory conan_fgw/config/schnet/property_regression/esol/
:
esol_5.yaml
## esol_5.yaml
disable_distribution: true # Disable distribution of the data across multiple devices or nodes.
dataset_name: ['esol'] # List of dataset names to be used. Here, it's the ESOL dataset.
dummy_size: -1 # Size of a dummy dataset for testing. -1 indicates not using a dummy dataset.
target: ['measured_log_sol'] # Target property to predict, here it's the measured log solubility.
num_conformers: 5 # Number of conformers to generate per molecule.
prune_conformers: false # Whether to prune conformers to a smaller set.
batch_size: 96 # Number of samples per batch during training.
experiment: conan_fgw.src.experiments.SOTAExperiment # Path to the experiment class used for training.
num_epochs: 150 # Total number of training epochs.
early_stopping: # Early stopping configuration to prevent overfitting.
min_delta: 0.0001 # Minimum change in the monitored metric to qualify as an improvement.
patience: 50 # Number of epochs with no improvement after which training will be stopped.
learning_rate: 0.001 # Initial learning rate for training.
use_lr_finder: false # Whether to use a learning rate finder to automatically adjust the learning rate.
use_wandb: false # Whether to use Weights & Biases for experiment tracking.
esol_5_bc.yaml
## esol_5_bc.yaml
disable_distribution: false # Whether to disable distribution of the data across multiple devices or nodes.
dataset_name: ['esol'] # List of dataset names to be used. Here, it's the ESOL dataset.
dummy_size: -1 # Size of a dummy dataset for testing. -1 indicates not using a dummy dataset.
target: ['measured_log_sol'] # Target property to predict, here it's the measured log solubility.
num_conformers: 5 # Number of conformers to generate per molecule.
prune_conformers: false # Whether to prune conformers to a smaller set.
batch_size: 24 # Number of samples per batch during training.
experiment: conan_fgw.src.experiments.SOTAExperimentBaryCenter # Path to the experiment class used for training.
num_epochs: 80 # Total number of training epochs.
early_stopping: # Early stopping configuration to prevent overfitting.
min_delta: 0.0001 # Minimum change in the monitored metric to qualify as an improvement.
patience: 50 # Number of epochs with no improvement after which training will be stopped.
learning_rate: 0.0005 # Initial learning rate for training.
use_lr_finder: false # Whether to use a learning rate finder to automatically adjust the learning rate.
use_wandb: false # Whether to use Weights & Biases for experiment tracking.
agg_weight: 0.2 # Aggregation weight for combining different terms or losses.
then, the rest of the bash script follows:
- Run the ConAN-FGW pretraining stage
export CUDA_VISIBLE_DEVICES=0
python conan_fgw/src/train_val.py \
--config_path=${WORKDIR}/conan_fgw/config/${model}/${task}/${ds}/${ds}_${n_cfm}.yaml \
--cuda_device=0 \
--data_root=${WORKDIR} \
--number_of_runs=${runs} \
--checkpoints_dir=${WORKDIR}/models \
--logs_dir=${WORKDIR}/outputs \
--run_name=${model}_${ds}_${n_cfm}_conan_fgw_pre \
--stage=conan_fgw_pre \
--model_name=${model} \
--run_id=${DATE} \
# --verbose ## To debug, set `--verbose` here for tracking detail running.
- Run the ConAN-FGW training stage
export CUDA_VISIBLE_DEVICES=0,1,2,3
python conan_fgw/src/train_val.py \
--config_path=${WORKDIR}/conan_fgw/config/${model}/${task}/${ds}/${ds}_${n_cfm}_bc.yaml \
--cuda_device=0 \
--data_root=${WORKDIR} \
--number_of_runs=${runs} \
--checkpoints_dir=${WORKDIR}/models \
--logs_dir=${WORKDIR}/outputs \
--run_name=${model}_${ds}_${n_cfm}_conan_fgw \
--stage=conan_fgw \
--model_name=${model} \
--run_id=${DATE} \
--conan_fgw_pre_ckpt_dir=${WORKDIR}/models/${model}_${ds}_${n_cfm}_conan_fgw_pre/${DATE} \
# --verbose ## To debug, set `--verbose` here for tracking detail running.
Full Script
## conan_fgw/script/run.sh
## Set the working directory to the current directory
export WORKDIR=$(pwd)
## Add the working directory to the PYTHONPATH
export PYTHONPATH="$WORKDIR:$PYTHONPATH"
## Get the current date and time in the format YYYY-MM-DD-HH-MM-SS
DATE=$(date +"%Y-%m-%d-%H-%M-%S")
## Set the visible CUDA devices to the first GPU for conan_fgw_pre training stage
export CUDA_VISIBLE_DEVICES=0
## Run the conan_fgw_pre training stage
python conan_fgw/src/train_val.py \
--config_path=${WORKDIR}/conan_fgw/config/${model}/${task}/${ds}/${ds}_${n_cfm}.yaml \
--cuda_device=0 \
--data_root=${WORKDIR} \
--number_of_runs=${runs} \
--checkpoints_dir=${WORKDIR}/models \
--logs_dir=${WORKDIR}/outputs \
--run_name=${model}_${ds}_${n_cfm}_conan_fgw_pre \
--stage=conan_fgw_pre \
--model_name=${model} \
--run_id=${DATE}
## Set the visible CUDA devices to GPUs 0, 1, 2, and 3 for using Distributed Data Parallel
export CUDA_VISIBLE_DEVICES=0,1,2,3
## Run the FGW (Fused Gromov-Wasserstein) training stage
python conan_fgw/src/train_val.py \
--config_path=${WORKDIR}/conan_fgw/config/${model}/${task}/${ds}/${ds}_${n_cfm}_bc.yaml \
--cuda_device=0 \
--data_root=${WORKDIR} \
--number_of_runs=${runs} \
--checkpoints_dir=${WORKDIR}/models \
--logs_dir=${WORKDIR}/outputs \
--run_name=${model}_${ds}_${n_cfm}_conan_fgw \
--stage=conan_fgw \
--model_name=${model} \
--run_id=${DATE} \
--conan_fgw_pre_ckpt_dir=${WORKDIR}/models/${model}_${ds}_${n_cfm}_conan_fgw_pre/${DATE}
For your reference, we provide an abstract of two model classes SchNet and ViSNet related to the ConAN-FGW model initialization and calculation for both ConAN-FGW pretraining
and training
stages:
SchNet
## conan_fgw/src/model/graph_embeddings/schnet_no_sum.py
from torch_geometric.nn import SchNet # The SchNet class used in ConAN is an extension of the SchNet class of torch_geometric
class SchNetNoSum(SchNet):
def __init__(
self,
device, # The device on which the model will run (e.g., CPU or GPU).
hidden_channels: int = 128, # Number of hidden channels (default: 128).
num_filters: int = 128, # Number of filters (default: 128).
num_interactions: int = 6, # Number of interaction blocks (default: 6).
num_gaussians: int = 50, # Number of Gaussians for distance expansion (default: 50).
cutoff: float = 10.0, # Cutoff distance for interactions (default: 10.0).
interaction_graph: Optional[Callable] = None, # Optional callable for defining the interaction graph.
max_num_neighbors: int = 32, # Maximum number of neighbors for each atom (default: 32).
readout: str = "add", # Readout function, default is "add".
dipole: bool = False, # Whether to include dipole moment prediction (default: False).
mean: Optional[float] = None, # Mean and standard deviation for normalization.
std: Optional[float] = None,
atomref: OptTensor = None, # Atomic reference values for target properties.
use_covalent: bool = False, # Whether to use covalent bond information (default: False).
use_readout: bool = True, # Whether to use the readout layer (default: True).
):
## Initialization
def forward(
self,
z: Tensor, # Atomic numbers of the atoms.
pos: Tensor, # Coordinates of the atoms.
batch: OptTensor = None, # Batch indices for separating molecules.
data_batch=None # Additional data, such as covalent bonds attributes.
) -> Tensor:
## Forward Pass without Barycenter Calculation
## Returns: Tensor containing the computed features for each molecule.
def forward_3d_bary(
self,
z: Tensor, # Atomic numbers of the atoms.
pos: Tensor, # Coordinates of the atoms.
batch: OptTensor = None, # Batch indices for separating molecules.
data_batch=None # Additional data, such as covalent bonds attributes.
) -> Tensor
## Forward Pass with Bary Center Calculation
## Returns: Two tensors, one for standard 3D aggregation and one for barycenter aggregation.
ViSNet
## conan_fgw/src/model/graph_embeddings/visnet.py
from torch_geometric.nn.models.visnet import ViSNet as NaiveViSNet # The ViSNet class used in ConAN is an extension of the ViSNet class of torch_geometric
class ViSNet(NaiveViSNet):
def __init__(
self,
device, # The device on which the model will run (e.g., CPU or GPU).
hidden_channels: int, # Number of hidden channels in the model.
cutoff: float = 5.0 # Distance cutoff for interaction graph construction.
):
## Initialization
def forward(
self,
z: Tensor, # Atomic numbers of the atoms.
pos: Tensor, # Coordinates of the atoms.
batch: OptTensor = None, # Batch indices for separating molecules.
data_batch=None # Additional data, such as covalent bonds attributes.
) -> Tensor:
## Forward Pass without Barycenter Calculation
## Returns: Tensor containing the computed features for each molecule.
def forward_3d_bary(
self,
z: Tensor, # Atomic numbers of the atoms.
pos: Tensor, # Coordinates of the atoms.
batch: OptTensor = None, # Batch indices for separating molecules.
data_batch=None # Additional data, such as covalent bonds attributes.
) -> Tensor
## Forward Pass with Bary Center Calculation
## Returns: Two tensors, one for standard 3D aggregation and one for barycenter aggregation.
Please cite this paper if it helps your research:
@article{nguyen2024structure,
title={Structure-Aware E (3)-Invariant Molecular Conformer Aggregation Networks},
author={Nguyen, Duy MH and Lukashina, Nina and Nguyen, Tai and Le, An T and Nguyen, TrungTin and Ho, Nhat and Peters, Jan and Sonntag, Daniel and Zaverkin, Viktor and Niepert, Mathias},
journal={International Conference on Machine Learning},
year={2024}
}