-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
341 additions
and
319 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
R/mockthat.R | ||
src/fastcpd_class_cost.cc |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,233 @@ | ||
#include "fastcpd_classes.h" | ||
|
||
namespace fastcpd::classes { | ||
|
||
CostResult Fastcpd::get_nll_arma( | ||
const unsigned int segment_start, | ||
const unsigned int segment_end | ||
) { | ||
const mat data_segment = data.rows(segment_start, segment_end); | ||
Environment stats = Environment::namespace_env("stats"); | ||
Function arima = stats["arima"]; | ||
List out = arima( | ||
Named("x") = data_segment.col(0), | ||
Named("order") = NumericVector::create(order(0), 0, order(1)), | ||
Named("include.mean") = false | ||
); | ||
colvec par = zeros(sum(order) + 1); | ||
par.rows(0, sum(order) - 1) = as<colvec>(out["coef"]); | ||
par(sum(order)) = as<double>(out["sigma2"]); | ||
|
||
return {{par}, {as<vec>(out["residuals"])}, -as<double>(out["loglik"])}; | ||
} | ||
|
||
CostResult Fastcpd::get_nll_glm( | ||
const unsigned int segment_start, | ||
const unsigned int segment_end, | ||
Nullable<colvec> start | ||
) { | ||
const mat data_segment = data.rows(segment_start, segment_end); | ||
vec y = data_segment.col(0); | ||
Environment fastglm = Environment::namespace_env("fastglm"); | ||
Function fastglm_ = fastglm["fastglm"]; | ||
List out; | ||
if (start.isNull()) { | ||
mat x = data_segment.cols(1, data_segment.n_cols - 1); | ||
out = fastglm_(x, y, family); | ||
} else { | ||
colvec start_ = as<colvec>(start); | ||
mat x = data_segment.cols(1, data_segment.n_cols - 1); | ||
out = fastglm_(x, y, family, Named("start") = start_); | ||
} | ||
vec par = as<vec>(out["coefficients"]); | ||
vec residuals = as<vec>(out["residuals"]); | ||
double value = out["deviance"]; | ||
return {{par}, {residuals}, value / 2}; | ||
} | ||
|
||
CostResult Fastcpd::get_nll_lasso_cv( | ||
const unsigned int segment_start, | ||
const unsigned int segment_end | ||
) { | ||
const mat data_segment = data.rows(segment_start, segment_end); | ||
Environment glmnet = Environment::namespace_env("glmnet"), | ||
stats = Environment::namespace_env("stats"); | ||
Function cv_glmnet = glmnet["cv.glmnet"], | ||
predict_glmnet = glmnet["predict.glmnet"], | ||
deviance = stats["deviance"]; | ||
List out = cv_glmnet( | ||
data_segment.cols(1, data_segment.n_cols - 1), | ||
data_segment.col(0), | ||
Named("family") = "gaussian" | ||
); | ||
colvec index_vec = as<colvec>(out["index"]), | ||
values = as<colvec>(deviance(out["glmnet.fit"])); | ||
S4 out_coef = predict_glmnet( | ||
out["glmnet.fit"], | ||
Named("s") = out["lambda.1se"], | ||
Named("type") = "coefficients", | ||
Named("exact") = false | ||
); | ||
vec glmnet_i = as<vec>(out_coef.slot("i")); | ||
vec glmnet_x = as<vec>(out_coef.slot("x")); | ||
vec par = zeros(data_segment.n_cols - 1); | ||
for (unsigned int i = 1; i < glmnet_i.n_elem; i++) { | ||
par(glmnet_i(i) - 1) = glmnet_x(i); | ||
} | ||
return {{par}, {mat()}, values(index_vec(1) - 1)}; | ||
} | ||
|
||
CostResult Fastcpd::get_nll_lasso_wo_cv( | ||
const unsigned int segment_start, | ||
const unsigned int segment_end, | ||
const double lambda | ||
) { | ||
const mat data_segment = data.rows(segment_start, segment_end); | ||
Environment stats = Environment::namespace_env("stats"), | ||
glmnet = Environment::namespace_env("glmnet"); | ||
Function deviance = stats["deviance"], glmnet_ = glmnet["glmnet"], | ||
predict_glmnet = glmnet["predict.glmnet"]; | ||
List out = glmnet_( | ||
data_segment.cols(1, data_segment.n_cols - 1), data_segment.col(0), | ||
Named("family") = "gaussian", Named("lambda") = lambda | ||
); | ||
S4 out_par = out["beta"]; | ||
vec par_i = as<vec>(out_par.slot("i")); | ||
vec par_x = as<vec>(out_par.slot("x")); | ||
vec par = zeros(data_segment.n_cols - 1); | ||
for (unsigned int i = 0; i < par_i.n_elem; i++) { | ||
par(par_i(i)) = par_x(i); | ||
} | ||
double value = as<double>(deviance(out)); | ||
vec fitted_values = as<vec>( | ||
predict_glmnet( | ||
out, data_segment.cols(1, data_segment.n_cols - 1), Named("s") = lambda | ||
) | ||
); | ||
vec residuals = data_segment.col(0) - fitted_values; | ||
return {{par}, {residuals}, value / 2}; | ||
} | ||
|
||
CostResult Fastcpd::get_nll_mean( | ||
const unsigned int segment_start, | ||
const unsigned int segment_end | ||
) { | ||
const rowvec data_diff = | ||
zero_data.row(segment_end + 1) - zero_data.row(segment_start); | ||
const unsigned int segment_length = segment_end - segment_start + 1; | ||
return { | ||
{zeros<colvec>(p)}, // # nocov | ||
{zeros<mat>(segment_length, p)}, | ||
std::log(2.0 * M_PI) * zero_data.n_cols + log_det_sympd(variance_estimate) * | ||
(segment_length) / 2.0 + ( | ||
data_diff(p) - dot( | ||
data_diff.subvec(0, p - 1), data_diff.subvec(0, p - 1) | ||
) / segment_length | ||
) / 2.0 | ||
}; | ||
} | ||
|
||
CostResult Fastcpd::get_nll_meanvariance( | ||
const unsigned int segment_start, | ||
const unsigned int segment_end | ||
) { | ||
rowvec data_diff = | ||
zero_data.row(segment_end + 1) - zero_data.row(segment_start); | ||
const unsigned int segment_length = segment_end - segment_start + 1; | ||
|
||
double det_value = det(( | ||
reshape(data_diff.subvec(d, p - 1), d, d) - ( | ||
data_diff.subvec(0, d - 1)).t() * (data_diff.subvec(0, d - 1) | ||
) / segment_length | ||
) / segment_length); | ||
if (segment_length <= d) { | ||
unsigned int approximate_segment_start; | ||
unsigned int approximate_segment_end; | ||
if (segment_start >= d) { | ||
approximate_segment_start = segment_start - d; | ||
} else { | ||
approximate_segment_start = 0; | ||
} | ||
if (segment_end < data_n_rows - d) { | ||
approximate_segment_end = segment_end + d; | ||
} else { | ||
approximate_segment_end = data_n_rows - 1; | ||
} | ||
data_diff = zero_data.row(approximate_segment_end + 1) - | ||
zero_data.row(approximate_segment_start); | ||
det_value = det(( | ||
reshape(data_diff.subvec(d, p - 1), d, d) - ( | ||
data_diff.subvec(0, d - 1)).t() * (data_diff.subvec(0, d - 1) | ||
) / (approximate_segment_end - approximate_segment_start + 1) | ||
) / (approximate_segment_end - approximate_segment_start + 1)); | ||
} | ||
|
||
return { | ||
{zeros<colvec>(p)}, | ||
{mat()}, | ||
(d * std::log(2.0 * M_PI) + d + log(det_value)) * (segment_length) / 2.0 | ||
}; | ||
} | ||
|
||
CostResult Fastcpd::get_nll_mgaussian( | ||
const unsigned int segment_start, | ||
const unsigned int segment_end | ||
) { | ||
const mat data_segment = data.rows(segment_start, segment_end); | ||
mat x = data_segment.cols(p_response, data_segment.n_cols - 1); | ||
mat y = data_segment.cols(0, p_response - 1); | ||
mat x_t_x; | ||
|
||
if (data_segment.n_rows <= data_segment.n_cols - p_response + 1) { | ||
x_t_x = eye<mat>( | ||
data_segment.n_cols - p_response, data_segment.n_cols - p_response | ||
); | ||
} else { | ||
x_t_x = x.t() * x; | ||
} | ||
|
||
mat par = solve(x_t_x, x.t()) * y; | ||
mat residuals = y - x * par; | ||
double value = | ||
p_response * std::log(2.0 * M_PI) + log_det_sympd(variance_estimate); | ||
value *= data_segment.n_rows; | ||
value += trace(solve(variance_estimate, residuals.t() * residuals)); | ||
return {{par}, {residuals}, value / 2}; | ||
} | ||
|
||
CostResult Fastcpd::get_nll_variance( | ||
const unsigned int segment_start, | ||
const unsigned int segment_end | ||
) { | ||
const unsigned int segment_length = segment_end - segment_start + 1; | ||
|
||
double det_value = det(arma::reshape( | ||
zero_data.row(segment_end + 1) - zero_data.row(segment_start), d, d | ||
) / segment_length); | ||
if (segment_length < d) { | ||
unsigned int approximate_segment_start; | ||
unsigned int approximate_segment_end; | ||
if (segment_start >= d) { | ||
approximate_segment_start = segment_start - d; | ||
} else { | ||
approximate_segment_start = 0; | ||
} | ||
if (segment_end < data_n_rows - d) { | ||
approximate_segment_end = segment_end + d; | ||
} else { | ||
approximate_segment_end = data_n_rows - 1; | ||
} | ||
det_value = det(arma::reshape( | ||
zero_data.row(approximate_segment_end + 1) - | ||
zero_data.row(approximate_segment_start), d, d | ||
) / (approximate_segment_end - approximate_segment_start + 1)); | ||
} | ||
|
||
return { | ||
{zeros<mat>(d, d)}, | ||
{mat()}, | ||
(std::log(2.0 * M_PI) * d + d + log(det_value)) * segment_length / 2.0 | ||
}; | ||
} | ||
|
||
} // namespace fastcpd::classes |
Oops, something went wrong.