Skip to content

🎒飞书 ×(GPT-3.5 + DALL·E + Whisper)= 飞一般的工作体验 🚀 语音对话、角色扮演、多话题讨论、图片创作、表格分析、文档导出 🚀

License

Notifications You must be signed in to change notification settings

dishangyijiao/Feishu-OpenAI

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

📷 点击展开完整功能截图

语音对话 角色扮演 角色列表 文字成图 图片变体 余额查询 帮助菜单


飞书 ×(GPT-3.5 + DALL·E + Whisper)

🚀 Feishu OpenAI 🚀

🥁 号外号外!

大家好呀!我是feishu-OpenAI的作者River。非常兴奋地欢迎大家加入我们的Connect-AI开源马拉松活动!

AIGC的热潮正在各行各业掀起巨大的变革,我们看到各大社群以”知识xx“为代表的”割韭菜“行为,不禁感到无奈。身为互联网行业的从业者,与其指点江山激扬文字,不如参与其中,感受发展。为此我们成立了下面10个课题组,并从技术可行性的基础上进行了调研,现并欢迎大家自由选择组队并加入相关的项目推进群。

image

无论您是设计师、前端工程师、后端工程师、算法工程师还是测试小伙伴,只要您对GPT技术充满热情,就可以参与到我们的开源项目中来。设计师们可以参与多个repo,优化项目的交互体验和设计风格;前端工程师可以参与每个项目的UI搭建;后端和算法工程师们则可以积极学习AI能力的使用。我们还诚邀测试小伙伴参与每次发版前的功能内测。

每个项目都需要招募一个项目负责人,我们会将其指定为repo的owner。如果您愿意深度参与,可以找我报名成为负责人。当然,如果项目表上有队长名称,则代表已经招募完成。其他同学可以在业余时间参与一个或多个项目。

我们的目标是为AI开源社区提供一个可持续性的生态系统,并且鼓励更多的人参与其中,共同推进AI技术的发展。后续遇到企业的定制AI开发需求,我们会优先邀请相关课题的同学参与,这样既可以帮助他们获取不错的收入,也符合开源的精神和原则。我们希望通过这样的方式,让我们的开源项目更有可持续性,让更多人愿意加入我们,共同推进AI技术的发展!

预期奖励内容包括:

  • A奖励:小队完成度奖励,鼓励小队长参与项目,能够在指定时间内完成课题规定的基本内容,队长应获得一定的奖励。
  • B奖励:项目优秀度奖励,根据项目复杂度、组内配合度、产品创意度,以及期中和期末用户体验打分,评选出优秀项目的队长和核心队员,并给予相应奖励。
  • C奖励:成员活跃度奖励,考虑到设计和测试身份的特殊性,无法单独带领项目。因此,我们将评选出优秀设计师和优秀测试反馈员,以表彰他们在项目中的积极参与和贡献。

我们队员有

如果您对Connect-AI开源马拉松感兴趣,请随时加入项目推进群,一起为AI技术的未来贡献力量!

image

👻 机器人功能

🗣 语音交流:私人直接与机器人畅所欲言

💬 多话题对话:支持私人和群聊多话题讨论,高效连贯

🖼 文本成图:支持文本成图和以图搜图

🛖 场景预设:内置丰富场景列表,一键切换AI角色

🎭 角色扮演:支持场景模式,增添讨论乐趣和创意

🤖 AI模式:内置4种AI模式,感受AI的智慧与创意

🔄 上下文保留:回复对话框即可继续同一话题讨论

⏰ 自动结束:超时自动结束对话,支持清除讨论历史

📝 富文本卡片:支持富文本卡片回复,信息更丰富多彩

👍 交互式反馈:即时获取机器人处理结果

🎰 余额查询:即时获取token消耗情况

🔙 历史回档:轻松回档历史对话,继续话题讨论 🚧

🔒 管理员模式:内置管理员模式,使用更安全可靠 🚧

🌐 多token负载均衡:优化生产级别的高频调用场景

↩️ 支持反向代理:为不同地区的用户提供更快、更稳定的访问体验

📚 与飞书文档互动:成为企业员工的超级助手 🚧

🎥 话题内容秒转PPT:让你的汇报从此变得更加简单 🚧

📊 表格分析:轻松导入飞书表格,提升数据分析效率 🚧

🍊 私有数据训练:利用公司产品信息对GPT二次训练,更好地满足客户个性化需求 🚧

🌟 项目特点

项目部署

有关飞书的配置文件说明,➡︎ 点击查看
本地部署
git clone [email protected]:Leizhenpeng/feishu-chatgpt.git
cd feishu-chatgpt/code

如果你的服务器没有公网 IP,可以使用反向代理的方式

飞书的服务器在国内对 ngrok 的访问速度很慢,所以推荐使用一些国内的反向代理服务商

# 配置config.yaml
mv config.example.yaml config.yaml

//测试部署
go run main.go
cpolar http 9000

//正式部署
nohup cpolar http 9000 -log=stdout &

//查看服务器状态
https://dashboard.cpolar.com/status

// 下线服务
ps -ef | grep cpolar
kill -9 PID

更多详细介绍,参考飞书上的小计算器: Go 机器人来啦


serverless云函数(阿里云等)部署
git clone [email protected]:Leizhenpeng/feishu-chatgpt.git
cd feishu-chatgpt/code

安装severless工具

# 配置config.yaml
mv config.example.yaml config.yaml
# 安装severless cli
npm install @serverless-devs/s -g

安装完成后,请根据您本地环境,根据下面教程部署severless

  • 本地 linux/mac os 环境
  1. 修改s.yaml中的部署地区和部署秘钥
edition: 1.0.0
name: feishuBot-chatGpt
access: "aliyun" #  修改自定义的秘钥别称

vars: # 全局变量
region: "cn-hongkong" # 修改云函数想要部署地区

  1. 一键部署
cd ..
s deploy
  • 本地windows
  1. 首先打开本地cmd命令提示符工具,运行go env检查你电脑上 go 环境变量设置, 确认以下变量和值
set GO111MODULE=on
set GOARCH=amd64
set GOOS=linux
set CGO_ENABLED=0

如果值不正确,比如您电脑上为set GOOS=windows, 请运行以下命令设置GOOS变量值

go env -w GOOS=linux
  1. 修改s.yaml中的部署地区和部署秘钥
edition: 1.0.0
name: feishuBot-chatGpt
access: "aliyun" #  修改自定义的秘钥别称

vars: # 全局变量
  region: "cn-hongkong" #  修改云函数想要部署地区

  1. 修改s.yaml中的pre-deploy, 去除第二步run前面的环变量改置部分
  pre-deploy:
        - run: go mod tidy
          path: ./code
        - run: go build -o
            target/main main.go  # 删除GO111MODULE=on GOOS=linux GOARCH=amd64 CGO_ENABLED=0
          path: ./code

  1. 一键部署
cd ..
s deploy

更多详细介绍,参考仅需 1min,用 Serverless 部署基于 gin 的飞书机器人

使用 Railway 平台一键部署

Railway 是一家国外的 Serverless 平台,支持多种语言,可以一键将 GitHub 上的代码仓库部署到 Railway 平台,然后在 Railway 平台上配置环境变量即可。部署本项目的流程如下:

1. 生成 Railway 项目

点击下方按钮即可创建一个对应的 Railway 项目,其会自动 Fork 本项目到你的 GitHub 账号下。

Deploy on Railway

2. 配置环境变量

在打开的页面中,配置环境变量,每个变量的说明如下图所示:

Railway 环境变量

3. 部署项目

填写完环境变量后,点击 Deploy 就完成了项目的部署。部署完成后还需获取对应的域名用于飞书机器人访问,如下图所示:

Railway 域名

如果不确定自己部署是否成功,可以通过访问上述获取到的域名 (https://xxxxxxxx.railway.app/ping) 来查看是否返回了pong ,如果返回了pong,说明部署成功。

docker部署
docker build -t feishu-chatgpt:latest .
docker run -d --name feishu-chatgpt -p 9000:9000 \
--env APP_ID=xxx \
--env APP_SECRET=xxx \
--env APP_ENCRYPT_KEY=xxx \
--env APP_VERIFICATION_TOKEN=xxx \
--env BOT_NAME=chatGpt \
--env OPENAI_KEY="sk-xxx1,sk-xxx2,sk-xxx3" \
--env API_URL="https://api.openai.com" \
--env HTTP_PROXY="" \
feishu-chatgpt:latest

注意:

  • BOT_NAME 为飞书机器人名称,例如 chatGpt
  • OPENAI_KEY 为openai key,多个key用逗号分隔,例如 sk-xxx1,sk-xxx2,sk-xxx3
  • HTTP_PROXY 为宿主机的proxy地址,例如 http://host.docker.internal:7890,没有代理的话,可以不用设置
  • API_URL 为openai api 接口地址,例如 https://api.openai.com, 没有反向代理的话,可以不用设置

小白简易化 docker 部署

docker run -d --restart=always --name feishu-chatgpt2 -p 9000:9000 -v /etc/localtime:/etc/localtim:ro  \
--env APP_ID=xxx \
--env APP_SECRET=xxx \
--env APP_ENCRYPT_KEY=xxx \
--env APP_VERIFICATION_TOKEN=xxx \
--env BOT_NAME=chatGpt \
--env OPENAI_KEY="sk-xxx1,sk-xxx2,sk-xxx3" \
--env API_URL=https://api.openai.com \
--env HTTP_PROXY="" \
dockerproxy.com/leizhenpeng/feishu-chatgpt:latest

事件回调地址: http://IP:9000/webhook/event 卡片回调地址: http://IP:9000/webhook/card

把它填入飞书后台


部署azure版本

docker build -t feishu-chatgpt:latest .
docker run -d --name feishu-chatgpt -p 9000:9000 \
--env APP_ID=xxx \
--env APP_SECRET=xxx \
--env APP_ENCRYPT_KEY=xxx \
--env APP_VERIFICATION_TOKEN=xxx \
--env BOT_NAME=chatGpt \
--env AZURE_ON=true \
--env AZURE_API_VERSION=xxx \
--env AZURE_RESOURCE_NAME=xxx \
--env AZURE_DEPLOYMENT_NAME=xxx \
--env AZURE_OPENAI_TOKEN=xxx \
feishu-chatgpt:latest

注意:

  • BOT_NAME 为飞书机器人名称,例如 chatGpt
  • AZURE_ON 为是否使用azure ,请填写 true
  • AZURE_API_VERSION 为azure api版本 例如 2023-03-15-preview
  • AZURE_RESOURCE_NAME 为azure 资源名称 类似 https://{AZURE_RESOURCE_NAME}.openai.azure.com
  • AZURE_DEPLOYMENT_NAME 为azure 部署名称 类似 https://{AZURE_RESOURCE_NAME}.openai.azure.com/deployments/{AZURE_DEPLOYMENT_NAME}/chat/completions
  • AZURE_OPENAI_TOKEN 为azure openai token
docker-compose 部署

编辑 docker-compose.yaml,通过 environment 配置相应环境变量(或者通过 volumes 挂载相应配置文件),然后运行下面的命令即可

# 构建镜像
docker compose build

# 启动服务
docker compose up -d

# 停止服务
docker compose down

事件回调地址: http://IP:9000/webhook/event 卡片回调地址: http://IP:9000/webhook/card

二进制安装包部署
  1. 进入release 页面 下载对应的安装包
  2. 解压安装包,修改 config.example.yml 中配置信息,另存为 config.yaml
  3. 目录下添加文件 role_list.yaml,自定义角色,可以从这里获取:链接
  4. 运行程序入口文件 feishu-chatgpt

事件回调地址: http://IP:9000/webhook/event 卡片回调地址: http://IP:9000/webhook/card

详细配置步骤

📸 点击展开飞书机器人配置的分步截图指导

  • 获取 OpenAI 的 KEY( 🙉 下面有免费的 KEY 供大家测试部署 )
  • 创建 飞书 机器人
    1. 前往开发者平台创建应用,并获取到 APPID 和 Secret
    2. 前往应用功能-机器人, 创建机器人
    3. 从 cpolar、serverless 或 Railway 获得公网地址,在飞书机器人后台的 事件订阅 板块填写。例如,
      • http://xxxx.r6.cpolar.top为 cpolar 暴露的公网地址
      • /webhook/event为统一的应用路由
      • 最终的回调地址为 http://xxxx.r6.cpolar.top/webhook/event
    4. 在飞书机器人后台的 机器人 板块,填写消息卡片请求网址。例如,
      • http://xxxx.r6.cpolar.top为 cpolar 暴露的公网地址
      • /webhook/card为统一的应用路由
      • 最终的消息卡片请求网址为 http://xxxx.r6.cpolar.top/webhook/card
    5. 在事件订阅板块,搜索三个词机器人进群接收消息消息已读, 把他们后面所有的权限全部勾选。 进入权限管理界面,搜索图片, 勾选获取与上传图片或文件资源。 最终会添加下列回调事件
      • im:resource(获取与上传图片或文件资源)
      • im:message
      • im:message.group_at_msg(获取群组中所有消息)
      • im:message.group_at_msg:readonly(接收群聊中@机器人消息事件)
      • im:message.p2p_msg(获取用户发给机器人的单聊消息)
      • im:message.p2p_msg:readonly(读取用户发给机器人的单聊消息)
      • im:message:send_as_bot(获取用户在群组中@机器人的消息)
      • im:chat:readonly(获取群组信息)
      • im:chat(获取与更新群组信息)
  1. 发布版本,等待企业管理员审核通过

更多介绍,参考飞书上的小计算器: Go 机器人来啦

免费 Openai_Key

这里有些免费的OpenAI Key, 大家可测试使用。

更多交流

如需协助部署,或者其他定制服务,可联系下面的WeChat,支持发票~

遇到问题,可以加入飞书群沟通~

交朋友 或者 鼓励一下

如果你觉得这个项目对你有帮助,可以请作者买本书~

😚 谢谢你啦 😚

About

🎒飞书 ×(GPT-3.5 + DALL·E + Whisper)= 飞一般的工作体验 🚀 语音对话、角色扮演、多话题讨论、图片创作、表格分析、文档导出 🚀

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Go 99.5%
  • Dockerfile 0.5%