My public talk about this project at Sberloga:
QaNER - NER via Exractive QA
Unofficial implementation of QaNER: Prompting Question Answering Models for Few-shot Named Entity Recognition.
You can adopt this pipeline for arbitrary BIO-markup data.
pip install qaner
Pipeline results on CoNLL-2003 dataset:
Script for training QaNER model:
qaner-train \
--bert_model_name 'bert-base-uncased' \
--path_to_prompt_mapper 'data/conll2003/prompt_mapper.json' \
--path_to_train_data 'data/conll2003/train.bio' \
--path_to_test_data 'data/conll2003/test.bio' \
--path_to_save_model 'dayyass/qaner-conll-bert-base-uncased' \
--n_epochs 2 \
--batch_size 128 \
--learning_rate 1e-5 \
--seed 42 \
--log_dir 'runs/qaner'
Required arguments:
- --bert_model_name - base bert model for QaNER fine-tuning
- --path_to_prompt_mapper - path to prompt mapper json file
- --path_to_train_data - path to train data (BIO-markup)
- --path_to_test_data - path to test data (BIO-markup)
- --path_to_save_model - path to save trained QaNER model
- --n_epochs - number of epochs to fine-tune
- --batch_size - batch size
- --learning_rate - learning rate
Optional arguments:
- --seed - random seed for reproducibility (default: 42)
- --log_dir - tensorboard log_dir (default: 'runs/qaner')
Script for inference trained QaNER model:
qaner-inference \
--context 'EU rejects German call to boycott British lamb .' \
--question 'What is the organization?' \
--path_to_prompt_mapper 'data/conll2003/prompt_mapper.json' \
--path_to_trained_model 'dayyass/qaner-conll-bert-base-uncased' \
--n_best_size 1 \
--max_answer_length 100 \
--seed 42
Result:
question: What is the organization?
context: EU rejects German call to boycott British lamb .
answer: [Span(token='EU', label='ORG', start_context_char_pos=0, end_context_char_pos=2)]
Required arguments:
- --context - sentence to extract entities from
- --question - question prompt with entity name to extract (examples below)
- --path_to_prompt_mapper - path to prompt mapper json file
- --path_to_trained_model - path to trained QaNER model
- --n_best_size - number of best QA answers to consider
Optional arguments:
- --max_answer_length - entity max length to eliminate very long entities (default: 100)
- --seed - random seed for reproducibility (default: 42)
Possible inference questions for CoNLL-2003:
- What is the location? (LOC)
- What is the person? (PER)
- What is the organization? (ORG)
- What is the miscellaneous entity? (MISC)
Python >= 3.7
@misc{liu2022qaner,
title = {QaNER: Prompting Question Answering Models for Few-shot Named Entity Recognition},
author = {Andy T. Liu and Wei Xiao and Henghui Zhu and Dejiao Zhang and Shang-Wen Li and Andrew Arnold},
year = {2022},
eprint = {2203.01543},
archivePrefix = {arXiv},
primaryClass = {cs.LG}
}