Skip to content

This project provides a client library that allows Azure SQL DB or SQL Server to act as an input source or output sink for Spark jobs.

License

Notifications You must be signed in to change notification settings

david-nguyen/azure-sqldb-spark

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spark connector for Azure SQL Databases and SQL Server

Build Status

The Spark connector for Azure SQL Database and SQL Server enables SQL databases, including Azure SQL Databases and SQL Server, to act as input data source or output data sink for Spark jobs. It allows you to utilize real time transactional data in big data analytics and persist results for adhoc queries or reporting.

Comparing to the built-in Spark connector, this connector provides the ability to bulk insert data into SQL databases. It can outperform row by row insertion with 10x to 20x faster performance. The Spark connector for Azure SQL Databases and SQL Server also supports AAD authentication. It allows you securely connecting to your Azure SQL databases from Azure Databricks using your AAD account. It provides similar interfaces with the built-in JDBC connector. It is easy to migrate your existing Spark jobs to use this new connector.

How to connect to Spark using this library

This connector uses Microsoft SQLServer JDBC driver to fetch data from/to the Azure SQL Database. Results are of the DataFrame type.

All connection properties in Microsoft JDBC Driver for SQL Server are supported in this connector. Add connection properties as fields in the com.microsoft.azure.sqldb.spark.config.Config object.

Reading from Azure SQL Database or SQL Server

import com.microsoft.azure.sqldb.spark.config.Config
import com.microsoft.azure.sqldb.spark.connect._

val config = Config(Map(
  "url"            -> "mysqlserver.database.windows.net",
  "databaseName"   -> "MyDatabase",
  "dbTable"        -> "dbo.Clients"
  "user"           -> "username",
  "password"       -> "*********",
  "connectTimeout" -> "5", //seconds
  "queryTimeout"   -> "5"  //seconds
))

val collection = sqlContext.read.sqlDB(config)
collection.show()

Writing to Azure SQL Database or SQL Server

import com.microsoft.azure.sqldb.spark.config.Config
import com.microsoft.azure.sqldb.spark.connect._
 
// Aquire a DataFrame collection (val collection)

val config = Config(Map(
  "url"          -> "mysqlserver.database.windows.net",
  "databaseName" -> "MyDatabase",
  "dbTable"      -> "dbo.Clients"
  "user"         -> "username",
  "password"     -> "*********"
))

import org.apache.spark.sql.SaveMode
collection.write.mode(SaveMode.Append).sqlDB(config)

Pushdown query to Azure SQL Database or SQL Server

For SELECT queries with expected return results, please use Reading from Azure SQL Database using Scala

import com.microsoft.azure.sqldb.spark.config.Config
import com.microsoft.azure.sqldb.spark.query._
val query = """
              |UPDATE Customers
              |SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'
              |WHERE CustomerID = 1;
            """.stripMargin

val config = Config(Map(
  "url"          -> "mysqlserver.database.windows.net",
  "databaseName" -> "MyDatabase",
  "user"         -> "username",
  "password"     -> "*********",
  "queryCustom"  -> query
))

sqlContext.azurePushdownQuery(config)

Bulk Copy to Azure SQL Database or SQL Server

import com.microsoft.azure.sqldb.spark.bulkcopy.BulkCopyMetadata
import com.microsoft.azure.sqldb.spark.config.Config
import com.microsoft.azure.sqldb.spark.connect._

/** 
  Add column Metadata.
  If not specified, metadata will be automatically added
  from the destination table, which may suffer performance.
*/
var bulkCopyMetadata = new BulkCopyMetadata
bulkCopyMetadata.addColumnMetadata(1, "Title", java.sql.Types.NVARCHAR, 128, 0)
bulkCopyMetadata.addColumnMetadata(2, "FirstName", java.sql.Types.NVARCHAR, 50, 0)
bulkCopyMetadata.addColumnMetadata(3, "LastName", java.sql.Types.NVARCHAR, 50, 0)

val bulkCopyConfig = Config(Map(
  "url"               -> "mysqlserver.database.windows.net",
  "databaseName"      -> "MyDatabase",
  "user"              -> "username",
  "password"          -> "*********",
  "databaseName"      -> "MyDatabase",
  "dbTable"           -> "dbo.Clients",
  "bulkCopyBatchSize" -> "2500",
  "bulkCopyTableLock" -> "true",
  "bulkCopyTimeout"   -> "600"
))

df.bulkCopyToSqlDB(bulkCopyConfig, bulkCopyMetadata)
//df.bulkCopyToSqlDB(bulkCopyConfig) if no metadata is specified.

Requirements

Official supported versions

Component Versions Supported
Apache Spark 2.0.2 or later
Scala 2.10 or later
Microsoft JDBC Driver for SQL Server 6.2 or later
Microsoft SQL Server SQL Server 2008 or later
Azure SQL Databases Supported

Download

Download from Maven

You can download the latest version from here

You can also use the following coordinate to import the library into Azure SQL Databricks: com.microsoft.azure:azure-sqldb-spark:1.0.2

Build this project

Currently, the connector project uses maven. To build the connector without dependencies, you can run:

mvn clean package

Contributing & Feedback

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

To give feedback and/or report an issue, open a GitHub Issue.

Apache®, Apache Spark, and Spark® are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries.

About

This project provides a client library that allows Azure SQL DB or SQL Server to act as an input source or output sink for Spark jobs.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Scala 70.2%
  • Java 29.8%