Skip to content

Commit

Permalink
Update index.qmd
Browse files Browse the repository at this point in the history
  • Loading branch information
kirenz committed Nov 10, 2023
1 parent d9548bc commit db37e44
Showing 1 changed file with 38 additions and 19 deletions.
57 changes: 38 additions & 19 deletions index.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ Welcome to our course Data Analytics with Statistics! πŸ‘‹
Note that this schedule will be updated as the seminar progresses.
:::


Nr. | Topic | Literature | Slides | Links | Code | Lecture/Online |
--- | --- | --- | --- | --- | --- | --- |
| **Introduction** | | | | | |
Expand All @@ -22,27 +23,45 @@ Nr. | Topic | Literature | Slides | Links | Code | Lecture/Online |
| **Data** | | | | | |
8 | First Data Analysis | [πŸ“š](https://openintro-ims.netlify.app/data-hello.html#case-study-stents-strokes) | [πŸ“‘](https://docs.google.com/presentation/d/1YXoCWZv37c3u_cMBc3o2_IG_atDlGdLhCwin_Rciwck/export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-ims/blob/main/ae/1_netflix.ipynb) | L |
9 | Data basics | [πŸ“š](https://openintro-ims.netlify.app/data-hello.html#data-basics) | [πŸ“‘](https://docs.google.com/presentation/d/1IlR_HTTNE865xiT3GlXD5_RNZDMMtlbNKRftLXPPmsw/export/pdf) | [β˜‘οΈ](https://forms.gle/EJT7mcYgPi8drKgR9) | | L |
10 | How to obtain data | | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1zldRDAOqmjoJmY_D4-ZkWfhwaklt-UfAPKH4G5kmFVY/export/pdf) --> | | | |
11 | Data wrangling: Pandas lab | [πŸ“š](https://pandas.pydata.org/docs/) | <!-- [πŸ’»](https://kirenz.github.io/lab-pandas-intro) --> | | | |
12 | Data analysis: Survey lab | | <!-- [πŸ’»](https://kirenz.github.io/lab-survey) --> | | | |
| **Study Design** | | <!-- --> | | | |
10 | How to obtain data | | [πŸ“‘](https://docs.google.com/presentation/d/1zldRDAOqmjoJmY_D4-ZkWfhwaklt-UfAPKH4G5kmFVY/export/pdf) | | | |
11 | Data wrangling: Pandas lab | [πŸ“š](https://pandas.pydata.org/docs/) | [πŸ’»](https://kirenz.github.io/lab-pandas-intro) | | | |
12 | Data analysis: Survey lab | | [πŸ’»](https://kirenz.github.io/lab-survey) | | | |
| **Study Design** | | | | | |
13 | Population and sample | [πŸ“š](https://openintro-ims.netlify.app/data-design.html#data-design) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1QPdxp5sFumf9zee-WypsuzSkY7n_hvkhFsdJkRF3-pw/export/pdf) --> | [β˜‘οΈ](https://forms.gle/qPYg55ncRyUGCqXH8) | | |
14 | Sampling methods | [πŸ“š](https://openintro-ims.netlify.app/data-design.html#sampling-principles-strategies) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1Rby9NR9F8pu1xHka0Xt1vvbH-oDRfrFC-bwb49IbhA8/export/pdf) --> | [β˜‘οΈ](https://forms.gle/SnQsTPKF5CRQ1Wa49) | | |
15 | Experiments | [πŸ“š](https://openintro-ims.netlify.app/data-design.html#experiments) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1FTNBLYBCId2qsL1sMJf3qgBtaFH3hpbUm8lPck5BaTQ/export/pdf) --> | [β˜‘οΈ](https://forms.gle/6Tu92Ez83XANW8Un6) | | |
16 | Observations | [πŸ“š](https://openintro-ims.netlify.app/data-design.html#observational-studies) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1Oz5T_nuO1UFcjbliFmsEQWxG1dKJHDPPNWDeTvukxbE/export/pdf) --> | [β˜‘οΈ](https://forms.gle/V36KmsTjeH2finms9) | | |
| **EDA with categorical data** | | <!-- --> | | | |
17 | Loans data | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#explore-categorical) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1o0TVpTvndPA1J23CdTtEThYSekjudkGXuW9HiEA65yc/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-1-data-overview.ipynb) --> | |
18 | Contingency tables | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#contingency-tables-and-bar-plots) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1xIfx5wWjSi2ciGDo3OcYmjOYWzQZ5jWC-UwqioKKO6k/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-1-contingency-table.ipynb) --> | |
19 | Contingency tables with proportions | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#row-and-column-proportions) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1fY1jRrnluZg9MDei9hcdtCRmRXlUqCg6lonQVzkItPQ/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-3-row-column-proportions.ipynb) --> | |
20 | Simple bar chart | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#contingency-tables-and-bar-plots) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1RpYvnIxE5QCK3-urCa76CHUvDqOKlFb7TdAn6XgYjew/export/pdf) --> | [πŸ’½ loan50.csv](https://raw.githubusercontent.com/kirenz/datasets/master/loan50.csv) | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-1-bar-chart-altair.ipynb) --> | L |
21 | Stacked bar plot | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#bar-plots-with-two-variables) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1TU5pqJqfgzcBRitDtSxjdRPhwl2TM9Rt3u3FHTPT020/export/pdf) --> | [πŸ’½ loan50.csv](https://raw.githubusercontent.com/kirenz/datasets/master/loan50.csv) | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-2-stacked-bar-chart-altair.ipynb) --> | L |
22 | Standardized bar plot | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#bar-plots-with-two-variables) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1BV7XwkZLfTMe5acsDomL3pcSsNhatpswRa11XuzNuLQ/export/pdf) --> | [πŸ’½ loan50.csv](https://raw.githubusercontent.com/kirenz/datasets/master/loan50.csv) | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-2-standardized-bar-chart-altair.ipynb) --> | L |
23 | Pie chart | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#pie-charts) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1Ks3jugleTrpLHwI0CDcPl2P7Uvj5z-iR35iTKJeNGxY/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-4-pie-charts-altair.ipynb) --> | |
| **EDA with numerical data** | | <!-- --> | | <!-- --> | |
24 | Scatterplot | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#scatterplots) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1K13NYtk-fXgIZCszUWkSN1FWqLPf8Ey8U7l9YZSQDtU/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/05-1-scatterplot-paired-data-altair.ipynb) --> | |
25 | Dot plot mean median and mode | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#dotplots) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1x0gxZ063LQOHHvvTdwP_086HPfl3Ul2PuzGDZFLXzI0/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/05-2-dot-plots-mean-altair.ipynb) --> | |
26 | Histogram | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#histograms) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1tpbG5V28sIVdLuE_oIWzz59tRMRNL8baXu2xHzE4Hb4/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/05-3-histograms-altair.ipynb) --> | |
27 | Kernel density plot | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#histograms) | <!-- [πŸ“‘](https://docs.google.com/presentation/d//export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/05-3-histograms-kernel-density-altair.ipynb) --> | |
28 | Box Plot | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#boxplots) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1VqT9rAbE_1zfhLrWNiQRiOjiJ0-pSjN1T0DM_BMAl_A/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/05-5-box-plot-altair.ipynb) --> | |
29 | Comparing numerical data across groups | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#comparing-numerical-data-across-groups) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1yWzxDmaSVwygOQoAuRdYLq_32lIe_utHlaOWW5f63jk/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-6-comparisons-across-groups-altair.ipynb) --> | |
30 | Variance and standard deviation | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#histograms) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1bsu5VJyS1LMFM3N6oh66dQ-Qf3DWiqRMPvasIbRqpLU/export/pdf) --> | | <!-- --> | |
17 | Loans data | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#explore-categorical) | [πŸ“‘](https://docs.google.com/presentation/d/1o0TVpTvndPA1J23CdTtEThYSekjudkGXuW9HiEA65yc/export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-1-data-overview.ipynb) | |
18 | Contingency tables | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#contingency-tables-and-bar-plots) | [πŸ“‘](https://docs.google.com/presentation/d/1xIfx5wWjSi2ciGDo3OcYmjOYWzQZ5jWC-UwqioKKO6k/export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-1-contingency-table.ipynb) | |
19 | Contingency tables with proportions | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#row-and-column-proportions) | [πŸ“‘](https://docs.google.com/presentation/d/1fY1jRrnluZg9MDei9hcdtCRmRXlUqCg6lonQVzkItPQ/export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-3-row-column-proportions.ipynb) | |
20 | Simple bar chart | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#contingency-tables-and-bar-plots) | [πŸ“‘](https://docs.google.com/presentation/d/1RpYvnIxE5QCK3-urCa76CHUvDqOKlFb7TdAn6XgYjew/export/pdf) | [πŸ’½ loan50.csv](https://raw.githubusercontent.com/kirenz/datasets/master/loan50.csv) | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-1-bar-chart-altair.ipynb) | L |
21 | Stacked bar plot | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#bar-plots-with-two-variables) | [πŸ“‘](https://docs.google.com/presentation/d/1TU5pqJqfgzcBRitDtSxjdRPhwl2TM9Rt3u3FHTPT020/export/pdf) | [πŸ’½ loan50.csv](https://raw.githubusercontent.com/kirenz/datasets/master/loan50.csv) | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-2-stacked-bar-chart-altair.ipynb) | L |
22 | Standardized bar plot | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#bar-plots-with-two-variables) | [πŸ“‘](https://docs.google.com/presentation/d/1BV7XwkZLfTMe5acsDomL3pcSsNhatpswRa11XuzNuLQ/export/pdf) | [πŸ’½ loan50.csv](https://raw.githubusercontent.com/kirenz/datasets/master/loan50.csv) | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-2-standardized-bar-chart-altair.ipynb) | L |
23 | Pie chart | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#pie-charts) | [πŸ“‘](https://docs.google.com/presentation/d/1Ks3jugleTrpLHwI0CDcPl2P7Uvj5z-iR35iTKJeNGxY/export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-4-pie-charts-altair.ipynb) | |
| **EDA with numerical data** | | | | | |
24 | Scatterplot | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#scatterplots) | [πŸ“‘](https://docs.google.com/presentation/d/1K13NYtk-fXgIZCszUWkSN1FWqLPf8Ey8U7l9YZSQDtU/export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/05-1-scatterplot-paired-data-altair.ipynb) | |
25 | Dot plot mean median and mode | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#dotplots) | [πŸ“‘](https://docs.google.com/presentation/d/1x0gxZ063LQOHHvvTdwP_086HPfl3Ul2PuzGDZFLXzI0/export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/05-2-dot-plots-mean-altair.ipynb) | L |
26 | Histogram | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#histograms) | [πŸ“‘](https://docs.google.com/presentation/d/1tpbG5V28sIVdLuE_oIWzz59tRMRNL8baXu2xHzE4Hb4/export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/05-3-histograms-altair.ipynb) | L |
27 | Kernel density plot | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#histograms) | [πŸ“‘](https://docs.google.com/presentation/d//export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/05-3-histograms-kernel-density-altair.ipynb) | L |
28 | Box Plot | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#boxplots) | [πŸ“‘](https://docs.google.com/presentation/d/1VqT9rAbE_1zfhLrWNiQRiOjiJ0-pSjN1T0DM_BMAl_A/export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/05-5-box-plot-altair.ipynb) | L |
29 | Comparing numerical data across groups | [πŸ“š](https://openintro-ims.netlify.app/explore-categorical.html#comparing-numerical-data-across-groups) | [πŸ“‘](https://docs.google.com/presentation/d/1yWzxDmaSVwygOQoAuRdYLq_32lIe_utHlaOWW5f63jk/export/pdf) | | [πŸ’»](https://colab.research.google.com/github/kirenz/lab-altair/blob/main/ae/04-6-comparisons-across-groups-altair.ipynb) | L |
30 | Variance and standard deviation | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#histograms) | [πŸ“‘](https://docs.google.com/presentation/d/1bsu5VJyS1LMFM3N6oh66dQ-Qf3DWiqRMPvasIbRqpLU/export/pdf) | | | |
31 | Robust statistics and transformations | [πŸ“š](https://openintro-ims.netlify.app/explore-numerical.html#robust-statistics) | [πŸ“‘](https://docs.google.com/presentation/d/16Oy2-hXJgTd4IUjYSj6ZN0gBimS_Oe5OSpe7B6I91qg/export/pdf) | | | |
| **Models** | | <!-- | | | |
32 | Statistical Learning, Machine Learning | | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1P3MkbJseVwLggUP_lGoNoZ3mk4_nOOBFZ6GmVzvBCzM/export/pdf) --> | | | |
33 | Types of Models | | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1ZycVKQLPSHGUv3Mga1CE3BHTL0W_gfszs6SkEh7fzeU/export/pdf) --> | | | |
| **Linear Regression models** | | <!-- --> | | | |
34 | Correlation | [πŸ“š](https://openintro-ims.netlify.app/model-slr.html#describing-linear-relationships-with-correlation) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1JyvtQBRiUhjncLki3ozy4SvvgwRqS7Gmj_vUpFokzzo/export/pdf) --> | [β˜‘οΈ](https://forms.gle/5ntV6z8yHk8g4qgZ8) | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-ims/blob/main/ims/07-2-correlation.ipynb) --> | |
35 | Sales and ads (1) | | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1q9o_PycjwItr-5PxotZFFzkwdqvo8fVskv_Y0H1CbxE/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-models/blob/main/ae/1_intro_sales.ipynb) --> | |
36 | Mean squared error (2) | | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1DnX0RnGCguOE2elQJFrcu2efZp6hjre7fsTrAfBJQTA/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-models/blob/main/ae/2_mse.ipynb) --> | |
37 | Mean squared error (3) | | <!-- NA --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-models/blob/main/ae/3_mse.ipynb) --> | |
38 | Mean squared error (4) | | <!-- NA --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-models/blob/main/ae/4_mse.ipynb) --> | |
39 | Fitting a line and residuals | [πŸ“š](https://openintro-ims.netlify.app/model-slr.html#fit-line-res-cor) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/18xWbx5rkptYfOaqzpfIc7RD-LC9Y-Wgs_7tz9Z2a2hg/export/pdf) --> | [β˜‘οΈ](https://forms.gle/JFMXzjByDRGZtbDx8) | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-ims/blob/main/ims/07-1-fitting.ipynb) --> | |
40 | Least squares regression | [πŸ“š](https://openintro-ims.netlify.app/model-slr.html#least-squares-regression) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1jreIuC0fOiVPHt6CUNYb-Kb4uKogCeftBZP5Zum6jSQ/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-ims/blob/main/ims/07-3-least-squares.ipynb) --> | |
41 | R squared | [πŸ“š](https://openintro-ims.netlify.app/model-slr.html#r-squared) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1ZIijR7F877M9peDH2rhb3IO7dP6JGDd1ypz_C2pAyGI/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-ims/blob/main/ims/07-4-strength-fit.ipynb) --> | |
42 | Categorical predictors with two levels | [πŸ“š](https://openintro-ims.netlify.app/model-slr.html#categorical-predictor-two-levels) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1Ca1pslYtl_bsPgY00JMhseV4klnU81AWw6s5Y8a15PA/export/pdf) --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-ims/blob/main/ims/07-5-categorical.ipynb) --> | |
43 | Outliers | [πŸ“š](https://openintro-ims.netlify.app/model-slr.html#outliers-in-regression) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1UxbXpM0_BtZu9nAUczUopOOGT39hzn9Ucz0jOTYmM_Y/export/pdf) --> | | <!-- --> | |
44 | Multiple predictors regression 1 | [πŸ“š](https://openintro-ims.netlify.app/model-mlr.html#model-mlr) | <!-- [πŸ“‘](https://docs.google.com/presentation/d/1ijhtWW58Kx1-ltulPSc1dKotJrXS7ZTGi6RFCKOGStA/export/pdf) --> | [β˜‘οΈ](https://forms.gle/wHPHMvbTDczNaQD97) | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-ims/blob/main/ims/08a-1-multiple.ipynb) --> | |
45 | Multiple predictors regression 2 | | <!-- NA --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-ims/blob/main/ims/08a-2-multiple.ipynb) --> | |
46 | Multiple predictors regression 3 | | <!-- NA --> | | <!-- [πŸ’»](https://colab.research.google.com/github/kirenz/lab-ims/blob/main/ims/08a-3-multiple.ipynb) --> | |

0 comments on commit db37e44

Please sign in to comment.