Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks.(https://arxiv.org/abs/1703.07015)
- Python 3.6+
- Pytorch 1.0+
- numpy
Exchange Rate dataset:
stock.shTraffic dataset:
traffic.shSolar-Energy dataset:
solar.shElectricity usage dataset:
ele.sh
main.py
- --data DATA
location of the data file
- -h --help
show this help message and exit
- --model DATA
select the model: LSTNet, CNN, RNN or MHA_Net
- --window WINDOW
window size (history size)
- --horizon HORIZON
forecasting horizon(step)
- --hidRNN HIDRNN
number of RNN hidden units each layer
- --rnn_layers RNN_LAYERS
number of RNN hidden layers
- --hidCNN HIDCNN
number of CNN hidden units (channels)
- --CNN_kernel CNN_KERNEL
the kernel size of the CNN layers
- --highway_window HIGHWAY_WINDOW
The window size of the highway component
- -n_head N_HEAD
num of self attention heads
- -d_k D_K
self attention key dimension
- -d_v D_V
self attention value dimension
- --clip CLIP
gradient clipping limit
- --epochs EPOCHS
upper epoch limit
- --batch_size N
batch_size
- --dropout DROPOUT
dropout applied to layers (0 = no dropout)
- --seed SEED
random seed
- --log_interval N
report interval
- --save SAVE
path to save the final model'
- --cuda CUDA
whether to use cuda device
- --optim OPTIM
optimizer method ,default 'adam'
- --amsgrad AMSGRAD
whether to use amsgrad
- --lr LR
learning rate
- --skip SKIP
autoregression window size
- --hidSkip HIDSKIP
skiphidden states dimension
- --L1Loss L1LOSS
whether to use l1 loss function
- --normalize NORMALIZE
whether to normalize the data
- --output_fun OUTPUT_FUN
relu, tanh or sigmoid