2019遥感图像稀疏表征与智能分析竞赛第三名方案
- Mask RCNN 0.3541
- Hybrid Task RCNN + deform conv 0.36633
- expand bbox 0.364
- cascade score thresh adopt to 0.5 0.366
- small number class augmentation 0.372
- cross_entropy weighted 0.369
- sync BN 0.376
- IOU sampler 0.383
- pesudo label fine tune 0.362
- balanced sampler 0.369
- augmentation 0.40
- 3 scale test 0.399
- resnext101 0.41
- scale2 finetune 0.43
Please refer to INSTALL.md for installation and dataset preparation.
python ./tools/prepare_data.py OR Dataprepare.ipynb
data will generate in ./data/rscup/annotation/ and ./data/rscup/train
./tools/dist_train.sh ./configs/rscup/htc_next_3s.py <gpu_num>
./tools/dist_test.sh ./configs/rscup/htc_next_3s.py ./work_dirs/htc_next_3s/epoch*.pth <gpu_num> \
--out test.pkl
python ./tools/merge_result.py
We achieved the converter from Hybrid Task cascade RCNN trained with mmdetection to Caffe.
Please refer " ".