"Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, and MATLAB"
Copyright (C) 2005-2021 The Sage Development Team
The Sage Library is free software released under the GNU General Public Licence GPLv2+, and included packages have compatible software licenses. Over 800 people have contributed code to Sage. In many cases, documentation for modules and functions list the authors.
If you downloaded a binary (i.e. a version of SageMath prepared for a specific operating system), Sage is ready to start -- just open a terminal in the directory where you extracted the binary archive and type:
$ ./sage
(Note that the first run will take more time, as Sage needs to get itself ready.)
If you downloaded the sources, please read below on how to build Sage and work around common issues.
If you have questions or encounter problems, please do not hesitate to email the sage-support mailing list or ask on the Ask Sage questions and answers site.
Sage attempts to support all major Linux distributions, recent versions of macOS, and Windows (using Cygwin, Windows Subsystem for Linux, or virtualization).
Detailed information on supported platforms for a specific version of Sage can be found in the section "Availability and installation help" of the release tour for this version.
We highly appreciate contributions to Sage that fix portability bugs and help port Sage to new platforms; let us know at the sage-devel mailing list.
You can also have a look at our Docker images to run Sage. To use these images, install Docker and follow the instructions on our Docker Hub page.
The 64-bit version of Cygwin, also known as Cygwin64, is the current target for Sage support on Windows.
-
Download cygwin64 (do not get the 32-bit version; it is not supported by Sage).
-
Run the
setup-x86_64.exe
graphical installer. Pick the default options in most cases. At the package selection screen, use the search bar to find and select at least the following packages:bzip2
,coreutils
,curl
,gawk
,gzip
,tar
,wget
,git
. -
Start the Cygwin terminal and ensure you get a working bash prompt.
-
Make sure the path of your Cygwin home directory does not contain space characters.
By default, your username in Cygwin is the same as your username in Windows. This might contain spaces and other traditionally non-UNIX-friendly characters, e.g., if it is your full name. You can check this as follows:
$ whoami Erik M. Bray
This means your default home directory on Cygwin contains this username verbatim; in the above example,
/home/Erik M. Bray
. It will save some potential trouble if you change your Cygwin home directory to contain only alphanumeric characters, for example,/home/embray
. The easiest way to do this is to first create the home directory you want to use instead, then create an/etc/passwd
file specifying that directory as your home, as follows:$ whocanibe=embray $ mkdir /home/$whocanibe $ mkpasswd.exe -l -u "$(whoami)" | sed -r 's,/home/[^:]+,/home/'$whocanibe, > /etc/passwd
After this, close all Cygwin terminals (ensure nothing in
C:\cygwin64
is running), then start a new Cygwin terminal and your home directory should have moved.There are other ways to do this, but the above seems to be the simplest that's still supported.
-
Install the package manager
apt-cyg
:$ curl -OL https://rawgit.com/transcode-open/apt-cyg/master/apt-cyg $ install apt-cyg /usr/local/bin $ rm -f apt-cyg
An alternative to Cygwin is to use Windows Subsystem for Linux, which allows you to install a standard Linux distribution such as Ubuntu within your Windows. Then all instructions for installation in Linux apply.
As another alternative, you can also run Linux on Windows using Docker (see above) or other virtualization solutions.
Make sure you have installed the most current version of Xcode supported on your version of macOS. If you don't, either go to https://developer.apple.com/, sign up, and download the free Xcode package, or get it from Apple's app store.
You also need to install the "command line tools": After installing
Xcode, run xcode-select --install
from a terminal window; then click
"Install" in the pop-up window. (When using Mountain Lion or earlier,
you need to install the command line tools from Xcode: run Xcode; then
from the File menu, choose "Preferences", then the "Downloads" tab,
and then "Install" the Command Line Tools.)
Optionally, you can consider installing Homebrew ("the missing package
manager for macOS") from https://brew.sh/, which can provide libraries
such as gfortran
, gmp
, etc.
Like many other software packages, Sage is built from source using
./configure
, followed by make
. However, we strongly recommend to
read the following step-by-step instructions for building Sage.
The instructions cover all of Linux, macOS, and Cygwin.
More detailed instructions are contained in the Installation Guide.
-
Decide on the source/build directory (
SAGE_ROOT
):-
On personal computers, any subdirectory of your :envvar:
HOME
directory should do. -
For example, you could use
SAGE_ROOT=~/sage/sage-x.y
, which we will use as the running example below, wherex.y
is the current Sage version. -
You need at least 10 GB of free disk space.
-
The full path to the source directory must contain no spaces.
-
After starting the build, you cannot move the source/build directory without breaking things.
-
You may want to avoid slow filesystems such as network file systems (NFS) and the like.
-
[macOS] macOS allows changing directories without using exact capitalization. Beware of this convenience when compiling for macOS. Ignoring exact capitalization when changing into :envvar:
SAGE_ROOT
can lead to build errors for dependencies requiring exact capitalization in path names. -
[Cygwin] Avoid building in home directories of Windows domain users or in paths with capital letters.
-
-
Download/unpack the sources.
-
Go to https://www.sagemath.org/download-source.html, select a mirror, and download the file :file:
sage-x.y.tar.gz
.This compressed archive file contains the source code for Sage and the source for all programs on which Sage depends.
-
After downloading the source tarball
sage-x.y.tar.gz
into~/sage/
:$ cd ~/sage/ $ tar xf sage-x.y.tar.gz # adapt x.y; takes a while
This creates the subdirectory
sage-x.y
. Now change into it:$ cd sage-x.y/ # adapt x.y
-
[Git] Alternatively, clone the Sage git repository:
$ ORIG=https://github.com/sagemath/sage.git $ git clone -c core.symlinks=true --branch develop --tags $ORIG
This will create the directory
sage
.Change into it and pick the branch you need, typically the latest development branch:
$ cd sage $ git checkout develop
-
[Windows] The Sage source tree contains symbolic links, and the build will not work if Windows line endings rather than UNIX line endings are used.
Therefore it is crucial that you unpack the source tree from the Cygwin (or WSL)
bash
using the Cygwin (or WSL)tar
utility and not using other Windows tools (including mingw). Likewise, when usinggit
, it is recommended (but not necessary) to use the Cygwin (or WSL) version ofgit
.
-
-
[Git] If you cloned the Sage repository using
git
, bootstrap the source tree using:$ make configure
-
Optionally, decide on the installation prefix (
SAGE_LOCAL
):-
Traditionally, and by default, Sage is installed into the subdirectory hierarchy rooted at
SAGE_ROOT/local/
. -
This can be changed using
./configure --prefix=SAGE_LOCAL
, whereSAGE_LOCAL
is the desired installation prefix, which must be writable by the user. -
Note that in Sage's build process,
make
builds and installs (make install
is a no-op). Therefore the installation hierarchy must be writable by the user. -
See the installation manual for options if you want to install into shared locations such as
/usr/local/
. Do not attempt to build Sage asroot
.
-
-
[Linux, Cygwin] Install the required minimal build prerequisites.
-
Compilers:
gcc
,gfortran
,g++
(a recent enough matching set of these three will avoid building Sage-specific compilers). See the Installation Manual for a discussion of suitable compilers. -
Build tools: GNU
make
, GNUm4
,perl
(includingExtUtils::MakeMaker
),ranlib
,git
,tar
,bc
. -
Python 3.4 or later, or Python 2.7, a full installation including
urllib
; but ideally version 3.7.x, 3.8.x, or 3.9.x, which will avoid having to build Sage's own copy of Python 3.
We have collected lists of system packages that provide these build prerequisites. See, in the folder build/pkgs/_prereq/distros, the files arch.txt, cygwin.txt, debian.txt (also for Ubuntu, Linux Mint, etc.), fedora.txt (also for Red Hat, CentOS), opensuse.txt, slackware.txt, and void.txt.
-
-
Optional: It is recommended that you have both LaTeX and the ImageMagick tools (e.g. the "convert" command) installed since some plotting functionality benefits from them.
-
Optionally, review the configuration options, which includes many optional packages:
$ ./configure --help
-
Optional, but highly recommended: Set some environment variables to customize the build.
For example, the
MAKE
environment variable controls whether to run several jobs in parallel. On a machine with 4 processors, say, typingexport MAKE="make -j4"
will configure the build script to perform a parallel compilation of Sage using 4 jobs. On some powerful machines, you might even consider-j16
, as building with more jobs than CPU cores can speed things up further.To reduce the terminal output during the build, type
export V=0
. (V
stands for "verbosity".)Some environment variables deserve a special mention:
CC
,CXX
andFC
. These variables defining your compilers can be set at configuration time and their values will be recorded for further use at build time and runtime.For an in-depth discussion of more environment variables for building Sage, see the installation guide.
-
Type
./configure
, followed by any options that you wish to use. For example, to build Sage withgf2x
package supplied by Sage, use./configure --with-system-gf2x=no
.At the end of a successful
./configure
run, you may see messages recommending to install extra system packages using your package manager.For a large list of Sage packages, Sage is able to detect whether an installed system package is suitable for use with Sage; in that case, Sage will not build another copy from source.
Sometimes, the messages will recommend to install packages that are already installed on your system. See the earlier configure messages or the file
config.log
for explanation. Also, the messages may recommend to install packages that are actually not available; only the most recent releases of your distribution will have all of these recommended packages. -
Optional: If you choose to install the additional system packages, a re-run of
./configure
will test whether the versions installed are usable for Sage; if they are, this will reduce the compilation time and disk space needed by Sage. The usage of packages may be adjusted by./configure
parameters (check again the output of./configure --help
). -
Type
make
. That's it! Everything is automatic and non-interactive.If you followed the above instructions, in particular regarding the installation of system packages recommended by the output of
./configure
(step 10), and regarding the parallel build (step 9), building Sage takes less than one hour on a modern computer. (Otherwise, it can take much longer.)The build should work fine on all fully supported platforms. If it does not, we want to know!
-
Type
./sage
to try it out. In Sage, try for example2 + 2
,plot(x^2)
,plot3d(lambda x, y: x*y, (-1, 1), (-1, 1))
to test a simple computation and plotting in 2D and 3D. Type Ctrl+D orquit
to quit Sage. -
Optional: Type
make ptestlong
to test all examples in the documentation (over 200,000 lines of input!) -- this takes from 10 minutes to several hours. Don't get too disturbed if there are 2 to 3 failures, but always feel free to email the section oflogs/ptestlong.log
that contains errors to the sage-support mailing list. If there are numerous failures, there was a serious problem with your build. -
The HTML version of the documentation is built during the compilation process of Sage and resides in the directory
local/share/doc/sage/html/
. You may want to bookmark it in your browser. -
Optional: If you want to build the PDF version of the documentation, run
make doc-pdf
(this requires LaTeX to be installed). -
Optional: Install optional packages of interest to you: get a list by typing
./sage --optional
or by visiting the packages documentation page. -
Optional: Create a symlink to the
sage
executable somewhere in yourPATH
, so you can start Sage by typingsage
from anywhere rather than having to either type the full path or navigate to the Sage directory and type./sage
. This can be done by running:$ ln -s $HOME/sage/sage-x.y/sage /usr/local/bin
The
$HOME/sage/sage-x.y/
part may need adapting. One way to decide how to adapt it is to runprint(SAGE_ROOT)
in a Sage session.
If you have problems building Sage, check the Sage Installation Guide, as well as the version-specific Sage Installation FAQ in the Sage Release Tour corresponding to the version that you are installing.
Please do not hesitate to ask for help in the SageMath forum or the sage-support mailing list. The Troubleshooting section in the Sage Installation Guide provides instructions on what information to provide so that we can provide help more effectively.
If you'd like to contribute to Sage, we strongly recommend that you read the Developer's Guide.
Sage has significant components written in the following languages: C/C++, Python, Cython, Common Lisp, Fortran, and a bit of Perl.
Simplified directory layout (only essential files/directories):
SAGE_ROOT Root directory (sage-x.y in Sage tarball)
├── build
│ └── pkgs Every package is a subdirectory here
│ ├── 4ti2/
│ …
│ └── zn_poly/
├── configure Top-level configure script
├── COPYING.txt Copyright information
├── pkgs Source trees of Python distribution packages
│ ├── sage-conf
│ │ ├── sage_conf.py
│ │ └── setup.py
│ ├── sage-docbuild
│ │ ├── sage_docbuild/
│ │ └── setup.py
│ ├── sage-setup
│ │ ├── sage_setup/
│ │ └── setup.py
│ ├── sage-sws2rst
│ │ ├── sage_sws2rst/
│ │ └── setup.py
│ └── sagemath-standard
│ ├── bin/
│ ├── sage -> ../../src/sage
│ └── setup.py
├── local (SAGE_LOCAL) Installation hierarchy for non-Python packages
│ ├── bin Executables
│ ├── include C/C++ headers
│ ├── lib Shared libraries, architecture-dependent data
│ ├── share Databases, architecture-independent data, docs
│ │ └── doc Viewable docs of Sage and of some components
│ └── var
│ ├── lib/sage
│ │ ├── installed/
│ │ │ Records of installed non-Python packages
│ │ ├── scripts/ Scripts for uninstalling installed packages
│ │ └── venv-python3.9 (SAGE_VENV)
│ │ │ Installation hierarchy (virtual environment)
│ │ │ for Python packages
│ │ ├── bin/ Executables and installed scripts
│ │ ├── lib/python3.9/site-packages/
│ │ │ Python modules/packages are installed here
│ │ └── var/lib/sage/
│ │ └── wheels/
│ │ Python wheels for all installed Python packages
│ │
│ └── tmp/sage/ Temporary files when building Sage
├── logs
│ ├── install.log Full install log
│ └── pkgs Build logs of individual packages
│ ├── alabaster-0.7.12.log
│ …
│ └── zn_poly-0.9.2.log
├── m4 M4 macros for generating the configure script
│ └── *.m4
├── Makefile Running "make" uses this file
├── prefix -> SAGE_LOCAL Convenience symlink to the installation tree
├── README.md This file
├── sage Script to start Sage
├── src Monolithic Sage library source tree
│ ├── bin/ Scripts that Sage uses internally
│ ├── doc/ Sage documentation sources
│ └── sage/ The Sage library source code
├── upstream Source tarballs of packages
│ ├── Babel-2.9.1.tar.gz
│ …
│ └── zn_poly-0.9.2.tar.gz
├── venv -> SAGE_VENV Convenience symlink to the virtual environment
└── VERSION.txt
For more details see our Developer's Guide.
This is a brief summary of the Sage software distribution's build system. There are two components to the full Sage system--the Sage Python library and its associated user interfaces, and the larger software distribution of Sage's main dependencies (for those dependencies not supplied by the user's system).
Sage's Python library is built and installed using a setup.py
script as is
standard for Python packages (Sage's setup.py
is non-trivial, but not
unusual).
Most of the rest of the build system is concerned with building all of Sage's
dependencies in the correct order in relation to each other. The dependencies
included by Sage are referred to as SPKGs (i.e. "Sage Packages") and are listed
under build/pkgs
.
The main entrypoint to Sage's build system is the top-level Makefile
at the
root of the source tree. Unlike most normal projects that use autoconf (Sage
does as well, as described below), this Makefile
is not generated. Instead,
it contains a few high-level targets and targets related to bootstrapping the
system. Nonetheless, we still run make <target>
from the root of the source
tree--targets not explicitly defined in the top-level Makefile
are passed
through to another Makefile under build/make/Makefile
.
The latter build/make/Makefile
is generated by an autoconf-generated
configure
script, using the template in build/make/Makefile.in
. This
includes rules for building the Sage library itself (make sagelib
), and for
building and installing each of Sage's dependencies (e.g. make gf2x
).
The configure
script itself, if it is not already built, can be generated by
running the bootstrap
script (the latter requires GNU autotools being installed).
The top-level Makefile
also takes care of this automatically.
To summarize, running a command like make python3
at the top-level of the
source tree goes something like this:
make python3
- run
./bootstrap
ifconfigure
needs updating - run
./configure
with any previously configured options ifbuild/make/Makefile
needs updating - change directory into
build/make
and run theinstall
script--this is little more than a front-end to runningmake -f build/make/Makefile python3
, which sets some necessary environment variables and logs some information build/make/Makefile
contains the actual rule for buildingpython3
; this includes building all ofpython3
's dependencies first (and their dependencies, recursively); the actual package installation is performed with thesage-spkg
program
It is not supported to move the SAGE_ROOT
or SAGE_LOCAL
directory
after building Sage. If you do move the directories, you will have to
build Sage again from scratch.
If you copy the sage
script or make a symbolic link to it, you
should modify the script to reflect this (as instructed at the top of
the script). It is important that the path to Sage does not have any
spaces and non-ASCII characters in it.
For a system-wide installation, you have to build Sage as a "normal" user and then as root you can change permissions. Afterwards, you need to start up Sage as root at least once prior to using the system-wide Sage as a normal user. See the Installation Guide for further information.
Your local Sage install is almost exactly the same as any "developer" install. You can make changes to documentation, source, etc., and very easily package the complete results up for redistribution just like we do.
-
To make a binary distribution with your currently installed packages, visit sagemath/binary-pkg.
-
To make your own source tarball of Sage, type:
$ make dist
The result is placed in the directory
dist/
.
All software included with Sage is copyrighted by the respective authors and released under an open source license that is GPL version 3 or later compatible. See COPYING.txt for more details.
Sources are in unmodified (as far as possible) tarballs in the
upstream/
directory. The remaining description, version
information, patches, and build scripts are in the accompanying
build/pkgs/<packagename>
directory. This directory is
part of the Sage git repository.