Skip to content

Commit

Permalink
Clean up docstrings
Browse files Browse the repository at this point in the history
  • Loading branch information
acrellin committed May 27, 2021
1 parent 1f4ab9f commit 0adacac
Showing 1 changed file with 33 additions and 22 deletions.
55 changes: 33 additions & 22 deletions cesium/features/lomb_scargle.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,10 @@


def lomb_scargle_model(time, signal, error, sys_err=0.05, nharm=8, nfreq=3, tone_control=5.0, opt_normalize=False):
"""Simultaneous fit of a sum of sinusoids by weighted least squares:
y(t) = Sum_k Ck*t^k + Sum_i Sum_j A_ij sin(2*pi*j*fi*(t-t0)+phi_j),
i=[1,nfreq], j=[1,nharm]
"""Simultaneous fit of a sum of sinusoids by weighted least squares.
y(t) = Sum_k Ck*t^k + Sum_i Sum_j A_ij sin(2*pi*j*fi*(t-t0)+phi_j),
i=[1,nfreq], j=[1,nharm]
Parameters
----------
Expand All @@ -19,11 +20,20 @@ def lomb_scargle_model(time, signal, error, sys_err=0.05, nharm=8, nfreq=3, tone
error : array_like
Array containing measurement error values.
nharm : int
Number of harmonics to fit for each frequency.
sys_err : float, optional
Defaults to 0.05
nharm : int, optional
Number of harmonics to fit for each frequency. Defaults to 8.
nfreq : int, optional
Number of frequencies to fit. Defaults to 3.
nfreq : int
Number of frequencies to fit.
tone_control : float, optional
Defaults to 5.0
opt_normalize : boolean, optional
Defaults to False.
Returns
-------
Expand Down Expand Up @@ -94,17 +104,17 @@ def lomb_scargle_model(time, signal, error, sys_err=0.05, nharm=8, nfreq=3, tone


def rescale_lomb_model(norm_model, mmean, mscale):
""" Rescale Lomb-Scargle model if compiled on normalized data.
"""Rescale Lomb-Scargle model if compiled on normalized data.
Parameters
----------
norm_model : dict
Lomb-Scargle model computed on normalized data
mmean : float64,
mmean : float64
mean of input_signal
mscale : float64,
mscale : float64
standard-deviation of input_signal
Returns
Expand Down Expand Up @@ -148,7 +158,8 @@ def fit_lomb_scargle(time, signal, error, f0, df, numf, nharm=8, psdmin=6., detr
lomb_scargle_model in order to produce a fit with multiple distinct
frequencies.
Inputs:
Parameters
----------
time : array_like
Array containing time values.
Expand Down Expand Up @@ -306,21 +317,21 @@ def fit_lomb_scargle(time, signal, error, f0, df, numf, nharm=8, psdmin=6., detr
vA0, vB0 = err2[0:nharm], err2[nharm:]
covA0B0 = hat_hat[(ii, nharm + ii)]

vmodl = vcn/s0 + np.dot((hat_matr/wth0).T, np.dot(hat_hat, hat_matr/wth0))
vmodl0 = vcn/s0 + np.dot((hat_matr0/wth0).T, np.dot(hat_hat, hat_matr0/wth0))
vmodl = vcn / s0 + np.dot((hat_matr / wth0).T, np.dot(hat_hat, hat_matr / wth0))
vmodl0 = vcn / s0 + np.dot((hat_matr0 / wth0).T, np.dot(hat_hat, hat_matr0 / wth0))
out_dict['model_error'] = np.sqrt(np.diag(vmodl))
out_dict['trend_error'] = np.sqrt(np.diag(vmodl0))

amp = np.sqrt(A0**2 + B0**2)
damp = np.sqrt(A0**2 * vA0 + B0**2 * vB0 + 2. * A0 * B0 * covA0B0) / amp
phase = np.arctan2(B0, A0)
rel_phase = phase - phase[0]*(1.+ii)
rel_phase = phase - phase[0] * (1. + ii)
rel_phase = np.arctan2(np.sin(rel_phase), np.cos(rel_phase))
dphase = 0.*rel_phase
dphase = 0. * rel_phase
for i in range(nharm - 1):
j = i + 1
v = np.array([-A0[0] * (1. + j) / amp[0]**2, B0[0] * (1. + j) / amp[0]**2, A0[j] / amp[j]**2, -B0[j] / amp[j]**2])
jj = np.array([0, nharm, j, j+nharm])
jj = np.array([0, nharm, j, j + nharm])
m = hat_hat[np.ix_(jj, jj)]
dphase[j] = np.sqrt(np.dot(np.dot(v, m), v))

Expand All @@ -334,39 +345,39 @@ def fit_lomb_scargle(time, signal, error, f0, df, numf, nharm=8, psdmin=6., detr
out_dict['trend_coef'] = coef / ncp
out_dict['y_offset'] = out_dict['trend_coef'][0] - cn0

prob = stats.f.sf(0.5 * (ntime - 1. - detrend_order) * (1. -out_dict['chi2'] / out_dict['chi0']), 2, ntime - 1 - detrend_order)
prob = stats.f.sf(0.5 * (ntime - 1. - detrend_order) * (1. - out_dict['chi2'] / out_dict['chi0']), 2, ntime - 1 - detrend_order)
out_dict['signif'] = lprob2sigma(np.log(prob))

return out_dict


def get_lomb_frequency(lomb_model, i):
"""Get the ith frequency from a fitted Lomb-Scargle model."""
return lomb_model['freq_fits'][i-1]['freq']
return lomb_model['freq_fits'][i - 1]['freq']


def get_lomb_amplitude(lomb_model, i, j):
"""
Get the amplitude of the jth harmonic of the ith frequency from a fitted
Lomb-Scargle model.
"""
return lomb_model['freq_fits'][i-1]['amplitude'][j-1]
return lomb_model['freq_fits'][i - 1]['amplitude'][j - 1]


def get_lomb_rel_phase(lomb_model, i, j):
"""
Get the relative phase of the jth harmonic of the ith frequency from a
fitted Lomb-Scargle model.
"""
return lomb_model['freq_fits'][i-1]['rel_phase'][j-1]
return lomb_model['freq_fits'][i - 1]['rel_phase'][j - 1]


def get_lomb_amplitude_ratio(lomb_model, i):
"""
Get the ratio of the amplitudes of the first harmonic for the ith and first
frequencies from a fitted Lomb-Scargle model.
"""
return (lomb_model['freq_fits'][i-1]['amplitude'][0] /
return (lomb_model['freq_fits'][i - 1]['amplitude'][0] /
lomb_model['freq_fits'][0]['amplitude'][0])


Expand All @@ -375,7 +386,7 @@ def get_lomb_frequency_ratio(lomb_model, i):
Get the ratio of the ith and first frequencies from a fitted Lomb-Scargle
model.
"""
return (lomb_model['freq_fits'][i-1]['freq'] /
return (lomb_model['freq_fits'][i - 1]['freq'] /
lomb_model['freq_fits'][0]['freq'])


Expand Down

0 comments on commit 0adacac

Please sign in to comment.