-
Notifications
You must be signed in to change notification settings - Fork 768
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1816 from truher/team100_camera_resectioning
add example CameraResectioning.py
- Loading branch information
Showing
1 changed file
with
85 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
# pylint: disable=consider-using-from-import,invalid-name,no-name-in-module,no-member,missing-function-docstring | ||
""" | ||
This is a 1:1 transcription of CameraResectioning.cpp. | ||
""" | ||
import numpy as np | ||
from gtsam import Cal3_S2, CustomFactor, LevenbergMarquardtOptimizer, KeyVector | ||
from gtsam import NonlinearFactor, NonlinearFactorGraph | ||
from gtsam import PinholeCameraCal3_S2, Point2, Point3, Pose3, Rot3, Values | ||
from gtsam.noiseModel import Base as SharedNoiseModel, Diagonal | ||
from gtsam.symbol_shorthand import X | ||
|
||
|
||
def resectioning_factor( | ||
model: SharedNoiseModel, | ||
key: int, | ||
calib: Cal3_S2, | ||
p: Point2, | ||
P: Point3, | ||
) -> NonlinearFactor: | ||
|
||
def error_func(this: CustomFactor, v: Values, H: list[np.ndarray]) -> np.ndarray: | ||
pose = v.atPose3(this.keys()[0]) | ||
camera = PinholeCameraCal3_S2(pose, calib) | ||
if H is None: | ||
return camera.project(P) - p | ||
Dpose = np.zeros((2, 6), order="F") | ||
Dpoint = np.zeros((2, 3), order="F") | ||
Dcal = np.zeros((2, 5), order="F") | ||
result = camera.project(P, Dpose, Dpoint, Dcal) - p | ||
H[0] = Dpose | ||
return result | ||
|
||
return CustomFactor(model, KeyVector([key]), error_func) | ||
|
||
|
||
def main() -> None: | ||
""" | ||
Camera: f = 1, Image: 100x100, center: 50, 50.0 | ||
Pose (ground truth): (Xw, -Yw, -Zw, [0,0,2.0]') | ||
Known landmarks: | ||
3D Points: (10,10,0) (-10,10,0) (-10,-10,0) (10,-10,0) | ||
Perfect measurements: | ||
2D Point: (55,45) (45,45) (45,55) (55,55) | ||
""" | ||
|
||
# read camera intrinsic parameters | ||
calib = Cal3_S2(1, 1, 0, 50, 50) | ||
|
||
# 1. create graph | ||
graph = NonlinearFactorGraph() | ||
|
||
# 2. add factors to the graph | ||
measurement_noise = Diagonal.Sigmas(np.array([0.5, 0.5])) | ||
graph.add( | ||
resectioning_factor( | ||
measurement_noise, X(1), calib, Point2(55, 45), Point3(10, 10, 0) | ||
) | ||
) | ||
graph.add( | ||
resectioning_factor( | ||
measurement_noise, X(1), calib, Point2(45, 45), Point3(-10, 10, 0) | ||
) | ||
) | ||
graph.add( | ||
resectioning_factor( | ||
measurement_noise, X(1), calib, Point2(45, 55), Point3(-10, -10, 0) | ||
) | ||
) | ||
graph.add( | ||
resectioning_factor( | ||
measurement_noise, X(1), calib, Point2(55, 55), Point3(10, -10, 0) | ||
) | ||
) | ||
|
||
# 3. Create an initial estimate for the camera pose | ||
initial: Values = Values() | ||
initial.insert(X(1), Pose3(Rot3(1, 0, 0, 0, -1, 0, 0, 0, -1), Point3(0, 0, 1))) | ||
|
||
# 4. Optimize the graph using Levenberg-Marquardt | ||
result: Values = LevenbergMarquardtOptimizer(graph, initial).optimize() | ||
result.print("Final result:\n") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |