Skip to content

Commit

Permalink
Merge pull request #1834 from borglab/hybrid-cleanup
Browse files Browse the repository at this point in the history
Remove HybridNonlinearFactor normalization code
  • Loading branch information
varunagrawal authored Sep 19, 2024
2 parents 2c140df + 1496017 commit 2897acc
Show file tree
Hide file tree
Showing 2 changed files with 8 additions and 60 deletions.
59 changes: 6 additions & 53 deletions gtsam/hybrid/HybridNonlinearFactor.h
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,6 @@ class HybridNonlinearFactor : public HybridFactor {
private:
/// Decision tree of Gaussian factors indexed by discrete keys.
Factors factors_;
bool normalized_;

public:
HybridNonlinearFactor() = default;
Expand All @@ -74,12 +73,10 @@ class HybridNonlinearFactor : public HybridFactor {
* @param keys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Decision tree with of shared factors.
* @param normalized Flag indicating if the factor error is already
* normalized.
*/
HybridNonlinearFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const Factors& factors, bool normalized = false)
: Base(keys, discreteKeys), factors_(factors), normalized_(normalized) {}
const Factors& factors)
: Base(keys, discreteKeys), factors_(factors) {}

/**
* @brief Convenience constructor that generates the underlying factor
Expand All @@ -95,15 +92,12 @@ class HybridNonlinearFactor : public HybridFactor {
* @param discreteKey The discrete key indexing each component factor.
* @param factors Vector of nonlinear factor and scalar pairs.
* Same size as the cardinality of discreteKey.
* @param normalized Flag indicating if the factor error is already
* normalized.
*/
template <typename FACTOR>
HybridNonlinearFactor(
const KeyVector& keys, const DiscreteKey& discreteKey,
const std::vector<std::pair<std::shared_ptr<FACTOR>, double>>& factors,
bool normalized = false)
: Base(keys, {discreteKey}), normalized_(normalized) {
const std::vector<std::pair<std::shared_ptr<FACTOR>, double>>& factors)
: Base(keys, {discreteKey}) {
std::vector<NonlinearFactorValuePair> nonlinear_factors;
KeySet continuous_keys_set(keys.begin(), keys.end());
KeySet factor_keys_set;
Expand Down Expand Up @@ -225,11 +219,10 @@ class HybridNonlinearFactor : public HybridFactor {
};
if (!factors_.equals(f.factors_, compare)) return false;

// If everything above passes, and the keys_, discreteKeys_ and normalized_
// If everything above passes, and the keys_ and discreteKeys_
// member variables are identical, return true.
return (std::equal(keys_.begin(), keys_.end(), f.keys().begin()) &&
(discreteKeys_ == f.discreteKeys_) &&
(normalized_ == f.normalized_));
(discreteKeys_ == f.discreteKeys_));
}

/// @}
Expand Down Expand Up @@ -260,46 +253,6 @@ class HybridNonlinearFactor : public HybridFactor {
return std::make_shared<HybridGaussianFactor>(
continuousKeys_, discreteKeys_, linearized_factors);
}

/**
* If the component factors are not already normalized, we want to compute
* their normalizing constants so that the resulting joint distribution is
* appropriately computed. Remember, this is the _negative_ normalizing
* constant for the measurement likelihood (since we are minimizing the
* _negative_ log-likelihood).
*/
double nonlinearFactorLogNormalizingConstant(const sharedFactor& factor,
const Values& values) const {
// Information matrix (inverse covariance matrix) for the factor.
Matrix infoMat;

// If this is a NoiseModelFactor, we'll use its noiseModel to
// otherwise noiseModelFactor will be nullptr
if (auto noiseModelFactor =
std::dynamic_pointer_cast<NoiseModelFactor>(factor)) {
// If dynamic cast to NoiseModelFactor succeeded, see if the noise model
// is Gaussian
auto noiseModel = noiseModelFactor->noiseModel();

auto gaussianNoiseModel =
std::dynamic_pointer_cast<noiseModel::Gaussian>(noiseModel);
if (gaussianNoiseModel) {
// If the noise model is Gaussian, retrieve the information matrix
infoMat = gaussianNoiseModel->information();
} else {
// If the factor is not a Gaussian factor, we'll linearize it to get
// something with a normalized noise model
// TODO(kevin): does this make sense to do? I think maybe not in
// general? Should we just yell at the user?
auto gaussianFactor = factor->linearize(values);
infoMat = gaussianFactor->information();
}
}

// Compute the (negative) log of the normalizing constant
return -(factor->dim() * log(2.0 * M_PI) / 2.0) -
(log(infoMat.determinant()) / 2.0);
}
};

} // namespace gtsam
9 changes: 2 additions & 7 deletions gtsam/hybrid/hybrid.i
Original file line number Diff line number Diff line change
Expand Up @@ -248,20 +248,15 @@ class HybridNonlinearFactor : gtsam::HybridFactor {
HybridNonlinearFactor(
const gtsam::KeyVector& keys, const gtsam::DiscreteKeys& discreteKeys,
const gtsam::DecisionTree<
gtsam::Key, std::pair<gtsam::NonlinearFactor*, double>>& factors,
bool normalized = false);
gtsam::Key, std::pair<gtsam::NonlinearFactor*, double>>& factors);

HybridNonlinearFactor(
const gtsam::KeyVector& keys, const gtsam::DiscreteKey& discreteKey,
const std::vector<std::pair<gtsam::NonlinearFactor*, double>>& factors,
bool normalized = false);
const std::vector<std::pair<gtsam::NonlinearFactor*, double>>& factors);

double error(const gtsam::Values& continuousValues,
const gtsam::DiscreteValues& discreteValues) const;

double nonlinearFactorLogNormalizingConstant(
const gtsam::NonlinearFactor* factor, const gtsam::Values& values) const;

HybridGaussianFactor* linearize(const gtsam::Values& continuousValues) const;

void print(string s = "HybridNonlinearFactor\n",
Expand Down

0 comments on commit 2897acc

Please sign in to comment.