-
Notifications
You must be signed in to change notification settings - Fork 768
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' into fix-python-postfix
- Loading branch information
Showing
5 changed files
with
201 additions
and
212 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
/* ---------------------------------------------------------------------------- | ||
* GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
* Atlanta, Georgia 30332-0415 | ||
* All Rights Reserved | ||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
* See LICENSE for the license information | ||
* -------------------------------------------------------------------------- */ | ||
|
||
/** | ||
* @file testGaussianMixture.cpp | ||
* @brief Test hybrid elimination with a simple mixture model | ||
* @author Varun Agrawal | ||
* @author Frank Dellaert | ||
* @date September 2024 | ||
*/ | ||
|
||
#include <gtsam/discrete/DecisionTreeFactor.h> | ||
#include <gtsam/discrete/DiscreteConditional.h> | ||
#include <gtsam/discrete/DiscreteKey.h> | ||
#include <gtsam/hybrid/HybridBayesNet.h> | ||
#include <gtsam/hybrid/HybridGaussianConditional.h> | ||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h> | ||
#include <gtsam/inference/Key.h> | ||
#include <gtsam/inference/Symbol.h> | ||
#include <gtsam/linear/GaussianConditional.h> | ||
#include <gtsam/linear/NoiseModel.h> | ||
|
||
// Include for test suite | ||
#include <CppUnitLite/TestHarness.h> | ||
|
||
using namespace gtsam; | ||
using symbol_shorthand::M; | ||
using symbol_shorthand::Z; | ||
|
||
// Define mode key and an assignment m==1 | ||
const DiscreteKey m(M(0), 2); | ||
const DiscreteValues m1Assignment{{M(0), 1}}; | ||
|
||
// Define a 50/50 prior on the mode | ||
DiscreteConditional::shared_ptr mixing = | ||
std::make_shared<DiscreteConditional>(m, "60/40"); | ||
|
||
// define Continuous keys | ||
const KeyVector continuousKeys{Z(0)}; | ||
|
||
/** | ||
* Create a simple Gaussian Mixture Model represented as p(z|m)P(m) | ||
* where m is a discrete variable and z is a continuous variable. | ||
* The "mode" m is binary and depending on m, we have 2 different means | ||
* μ1 and μ2 for the Gaussian density p(z|m). | ||
*/ | ||
HybridBayesNet GaussianMixtureModel(double mu0, double mu1, double sigma0, | ||
double sigma1) { | ||
HybridBayesNet hbn; | ||
auto model0 = noiseModel::Isotropic::Sigma(1, sigma0); | ||
auto model1 = noiseModel::Isotropic::Sigma(1, sigma1); | ||
auto c0 = std::make_shared<GaussianConditional>(Z(0), Vector1(mu0), I_1x1, | ||
model0), | ||
c1 = std::make_shared<GaussianConditional>(Z(0), Vector1(mu1), I_1x1, | ||
model1); | ||
hbn.emplace_shared<HybridGaussianConditional>(continuousKeys, KeyVector{}, m, | ||
std::vector{c0, c1}); | ||
hbn.push_back(mixing); | ||
return hbn; | ||
} | ||
|
||
/// Gaussian density function | ||
double Gaussian(double mu, double sigma, double z) { | ||
return exp(-0.5 * pow((z - mu) / sigma, 2)) / sqrt(2 * M_PI * sigma * sigma); | ||
}; | ||
|
||
/** | ||
* Closed form computation of P(m=1|z). | ||
* If sigma0 == sigma1, it simplifies to a sigmoid function. | ||
* Hardcodes 60/40 prior on mode. | ||
*/ | ||
double prob_m_z(double mu0, double mu1, double sigma0, double sigma1, | ||
double z) { | ||
const double p0 = 0.6 * Gaussian(mu0, sigma0, z); | ||
const double p1 = 0.4 * Gaussian(mu1, sigma1, z); | ||
return p1 / (p0 + p1); | ||
}; | ||
|
||
/// Given \phi(m;z)\phi(m) use eliminate to obtain P(m|z). | ||
DiscreteConditional SolveHFG(const HybridGaussianFactorGraph &hfg) { | ||
return *hfg.eliminateSequential()->at(0)->asDiscrete(); | ||
} | ||
|
||
/// Given p(z,m) and z, convert to HFG and solve. | ||
DiscreteConditional SolveHBN(const HybridBayesNet &hbn, double z) { | ||
VectorValues given{{Z(0), Vector1(z)}}; | ||
return SolveHFG(hbn.toFactorGraph(given)); | ||
} | ||
|
||
/* | ||
* Test a Gaussian Mixture Model P(m)p(z|m) with same sigma. | ||
* The posterior, as a function of z, should be a sigmoid function. | ||
*/ | ||
TEST(GaussianMixture, GaussianMixtureModel) { | ||
double mu0 = 1.0, mu1 = 3.0; | ||
double sigma = 2.0; | ||
|
||
auto hbn = GaussianMixtureModel(mu0, mu1, sigma, sigma); | ||
|
||
// At the halfway point between the means, we should get P(m|z)=0.5 | ||
double midway = mu1 - mu0; | ||
auto pMid = SolveHBN(hbn, midway); | ||
EXPECT(assert_equal(DiscreteConditional(m, "60/40"), pMid)); | ||
|
||
// Everywhere else, the result should be a sigmoid. | ||
for (const double shift : {-4, -2, 0, 2, 4}) { | ||
const double z = midway + shift; | ||
const double expected = prob_m_z(mu0, mu1, sigma, sigma, z); | ||
|
||
// Workflow 1: convert HBN to HFG and solve | ||
auto posterior1 = SolveHBN(hbn, z); | ||
EXPECT_DOUBLES_EQUAL(expected, posterior1(m1Assignment), 1e-8); | ||
|
||
// Workflow 2: directly specify HFG and solve | ||
HybridGaussianFactorGraph hfg1; | ||
hfg1.emplace_shared<DecisionTreeFactor>( | ||
m, std::vector{Gaussian(mu0, sigma, z), Gaussian(mu1, sigma, z)}); | ||
hfg1.push_back(mixing); | ||
auto posterior2 = SolveHFG(hfg1); | ||
EXPECT_DOUBLES_EQUAL(expected, posterior2(m1Assignment), 1e-8); | ||
} | ||
} | ||
|
||
/* | ||
* Test a Gaussian Mixture Model P(m)p(z|m) with different sigmas. | ||
* The posterior, as a function of z, should be a unimodal function. | ||
*/ | ||
TEST(GaussianMixture, GaussianMixtureModel2) { | ||
double mu0 = 1.0, mu1 = 3.0; | ||
double sigma0 = 8.0, sigma1 = 4.0; | ||
|
||
auto hbn = GaussianMixtureModel(mu0, mu1, sigma0, sigma1); | ||
|
||
// We get zMax=3.1333 by finding the maximum value of the function, at which | ||
// point the mode m==1 is about twice as probable as m==0. | ||
double zMax = 3.133; | ||
auto pMax = SolveHBN(hbn, zMax); | ||
EXPECT(assert_equal(DiscreteConditional(m, "42/58"), pMax, 1e-4)); | ||
|
||
// Everywhere else, the result should be a bell curve like function. | ||
for (const double shift : {-4, -2, 0, 2, 4}) { | ||
const double z = zMax + shift; | ||
const double expected = prob_m_z(mu0, mu1, sigma0, sigma1, z); | ||
|
||
// Workflow 1: convert HBN to HFG and solve | ||
auto posterior1 = SolveHBN(hbn, z); | ||
EXPECT_DOUBLES_EQUAL(expected, posterior1(m1Assignment), 1e-8); | ||
|
||
// Workflow 2: directly specify HFG and solve | ||
HybridGaussianFactorGraph hfg; | ||
hfg.emplace_shared<DecisionTreeFactor>( | ||
m, std::vector{Gaussian(mu0, sigma0, z), Gaussian(mu1, sigma1, z)}); | ||
hfg.push_back(mixing); | ||
auto posterior2 = SolveHFG(hfg); | ||
EXPECT_DOUBLES_EQUAL(expected, posterior2(m1Assignment), 1e-8); | ||
} | ||
} | ||
|
||
/* ************************************************************************* */ | ||
int main() { | ||
TestResult tr; | ||
return TestRegistry::runAllTests(tr); | ||
} | ||
/* ************************************************************************* */ |
Oops, something went wrong.