This repository contains the GPU versionn of https://github.com/emmanuelle/random_walker/blob/with_data/random_walker.py
helpers: Contains the scripts to run everything. helper_numpy is almost an identical copy paste of the original repo.
visualisation.ipynb: Contains a notebook giving visual unit test.
Performance Results:
GPU Speed up for lapcian @size: (125, 125, 125) 63.231481243642904 % (just run python test.py
)
Notes:
- Have to create more unit tests in terms of visualisation
To-do:
- Create a GPU based approach with torch instead of numpy on CPU
- Unit Tests
- Input and Output Testing with mock nifti like files.
- VERY POOR Memory optimisation at the moment.
References :
- The original repo - https://github.com/emmanuelle/random_walker
vsmcrc_102608_0000.nii.gz*
-> Raw Volumevsmcrc_102608.nii.gz
-> Segmentation result from model-1 910-910vsmcrc_102608.npz
-> Weights for prior from model-1 910-910