Skip to content

atranitell/TensorGate

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TensorGate


Version License Linux CPU Linux GPU Windows CPU Windows GPU Mac GPU

TensorGate is an open-source framework based on TensorFlow deep learning open source library. It offers a set of upper layer demo for a variety of deep learning, such as image classification, recognition, segmentation, GAN network, etc. Also, it offeres a set of analyizer tools to parse the log data.

Requirements

  • python > 3.6
  • tensorflow >= 1.7.0
  • CUDA == 9.0
  • cuDNN == 7.0
  • python-opencv
  • json

Usage

# running to train mnist dataset on GPU-0
$ python main.py 0 -dataset=mnist
# load config file to train mnist on GPU-0
$ python main.py 0 -dataset=mnist -extra=demo.json

Directory

  • <asserts> used by example code
  • <demo> pre-setting config file
  • <gate> provide critical functions for running gate framework
    • <config> provide config file for a variety of datasets
    • <data> data index and prefetech method
      • <tfqueue> using tensorflow queue and batch prefetch method
      • <custom> customed data model by using placeholder
      • data_utils.py a unified tools for all data model
      • data_factory.py data factory to index the data model
    • <layer> customed loss/net/ops assemble
    • <net> collect a variety of network models
      • <custom> customed network for specific task
      • <deepfuse> multi-layer weight shared network model
      • <nets> slim net model
      • <vae> varational auto-encoder model zoos
      • net_factory.py net factory to index the model
      • net_model.py model parameter config assemble
    • <solver> offer the training tools and snapshot
    • <util> system utils
    • <processing> data processing method
    • context.py the running context to manage the app
    • env.py a global output control center
  • <samples> offer some examples for current deep learning tasks
  • <tools> some external tools to analyze the data and log event files
    • drawer.py provide a set of drawing tools by using log file
    • dataset.py provide tool to generate train/val/test file for specific data folder
  • main.py start and initialize the system
  • pipline.py execute multi-task at once
  • compile.py packege gate into a fold in .bin or .py without debug info

To-Do

  • (05/15/18) Merge drawer into gate
  • (05/12/18) Resume pipline & fix a bug of config-base re-write
  • (05/12/18) Merge drawer in
  • (05/08/18) Review Kinface related issues
  • (05/08/18) Review AVEC2014-CNN/HEATMAP/FLOW/BICNN/Audio-NET
  • Reconstruct gate framework to make more flexible
  • Add mask-rcnn trainig module
  • Add mask-rcnn inference module
  • Add mask-rcnn visualization method
  • (04/08/18) Add batchnorm params to update collections (fixed BN un-trained)
  • (03/08/18) Add GradCAM, guidedCAM, guided backpropagation
  • (03/08/18) Add heatmap for AVEC2014-Image
  • (03/08/18) Package heatmap as a class
  • Update slim model to TensorGate
  • Update net factory logic: argscope in the head of net model
  • Package functions with class
  • Learning rate: add cosine, linear cosine, noisy linear cosine, inverse time
  • Optimizer: add proximal, proximal adagrad
  • Env: summary, logger, compiler
  • Move classical model to ./example
  • Move project model to ./issue
  • Separate preprocessing method by input format
  • Re-construct data layer
  • Move a part of classical method to example folder

License

Apache License 2.0

Releases

No releases published

Packages

No packages published