Version |
License |
Linux CPU |
Linux GPU |
Windows CPU |
Windows GPU |
Mac GPU |
---|---|---|---|---|---|---|
TensorGate is an open-source framework based on TensorFlow deep learning open source library. It offers a set of upper layer demo for a variety of deep learning, such as image classification, recognition, segmentation, GAN network, etc. Also, it offeres a set of analyizer tools to parse the log data.
- python > 3.6
- tensorflow >= 1.7.0
- CUDA == 9.0
- cuDNN == 7.0
- python-opencv
- json
# running to train mnist dataset on GPU-0
$ python main.py 0 -dataset=mnist
# load config file to train mnist on GPU-0
$ python main.py 0 -dataset=mnist -extra=demo.json
- <asserts> used by example code
- <demo> pre-setting config file
- <gate> provide critical functions for running gate framework
- <config> provide config file for a variety of datasets
- <dataset> a series of dataset config to index
- mnist.py MNIST classification
- config_base.py config base class
- config_params.py config params to set parameters
- config_factory.py config factory to index the dataset
- <dataset> a series of dataset config to index
- <data> data index and prefetech method
- <tfqueue> using tensorflow queue and batch prefetch method
- <custom> customed data model by using placeholder
- data_utils.py a unified tools for all data model
- data_factory.py data factory to index the data model
- <layer> customed loss/net/ops assemble
- <net> collect a variety of network models
- <custom> customed network for specific task
- <deepfuse> multi-layer weight shared network model
- <nets> slim net model
- <vae> varational auto-encoder model zoos
- net_factory.py net factory to index the model
- net_model.py model parameter config assemble
- <solver> offer the training tools and snapshot
- learning_rate.py provide different learning rate decay method
- optimizer.py provide various optimizer
- snapshot.py dumping the ckpt in according to a certain of iterations
- summary.py record the running info
- updater.py updater gradient to weights
- <util> system utils
- checkpoint.py load and operate tensorflow ckpt
- devicequery.py help to search/show device info
- filesystem.py folder/file operation
- logger.py event helper
- profiler.py detecter of network model
- similarity.py a cosine-metric method
- string.py string/tensor-string operation
- variable.py search/print/select variables in the network
- heatmap.py generate heatmap image for visual data
- <processing> data processing method
- <slim> including slim processing method and corresponding interface
- processing_vision.py vision data processing
- processing_audio.py audio data processing
- processing_text.py text type data processing
- context.py the running context to manage the app
- env.py a global output control center
- <config> provide config file for a variety of datasets
- <samples> offer some examples for current deep learning tasks
- <vision> several common vision tasks
- <avec2014> research on AVEC2014 (multi-modal) depressive recognition tasks
- <kinship> research on Kinship recognition tasks
- <trafficflow> research on TrafficFlow dataset tasks
- <tools> some external tools to analyze the data and log event files
- drawer.py provide a set of drawing tools by using log file
- dataset.py provide tool to generate train/val/test file for specific data folder
- main.py start and initialize the system
- pipline.py execute multi-task at once
- compile.py packege
gate
into a fold in.bin
or.py
without debug info
- (05/15/18) Merge drawer into gate
- (05/12/18) Resume pipline & fix a bug of config-base re-write
- (05/12/18) Merge drawer in
- (05/08/18) Review Kinface related issues
- (05/08/18) Review AVEC2014-CNN/HEATMAP/FLOW/BICNN/Audio-NET
- Reconstruct gate framework to make more flexible
- Add mask-rcnn trainig module
- Add mask-rcnn inference module
- Add mask-rcnn visualization method
- (04/08/18) Add batchnorm params to update collections (fixed BN un-trained)
- (03/08/18) Add GradCAM, guidedCAM, guided backpropagation
- (03/08/18) Add heatmap for AVEC2014-Image
- (03/08/18) Package heatmap as a class
- Update slim model to TensorGate
- Update net factory logic: argscope in the head of net model
- Package functions with class
- Learning rate: add cosine, linear cosine, noisy linear cosine, inverse time
- Optimizer: add proximal, proximal adagrad
- Env: summary, logger, compiler
- Move classical model to ./example
- Move project model to ./issue
- Separate preprocessing method by input format
- Re-construct data layer
- Move a part of classical method to example folder