Skip to content

Commit

Permalink
PyTorch Hub and autoShape update (ultralytics#1415)
Browse files Browse the repository at this point in the history
* PyTorch Hub and autoShape update

* comment x for imgs

* reduce comment
  • Loading branch information
glenn-jocher authored Nov 16, 2020
1 parent 92c9b72 commit f542926
Show file tree
Hide file tree
Showing 5 changed files with 84 additions and 35 deletions.
2 changes: 1 addition & 1 deletion detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ def detect(save_img=False):
txt_path = str(save_dir / 'labels' / p.stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

Expand Down
16 changes: 8 additions & 8 deletions hubconf.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,15 +5,16 @@
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
"""

dependencies = ['torch', 'yaml']
from pathlib import Path

import torch
from PIL import Image

from models.yolo import Model
from utils.general import set_logging
from utils.google_utils import attempt_download

dependencies = ['torch', 'yaml', 'pillow']
set_logging()


Expand Down Expand Up @@ -41,7 +42,7 @@ def create(name, pretrained, channels, classes):
model.load_state_dict(state_dict, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
# model = model.autoshape() # for autoshaping of PIL/cv2/np inputs and NMS
# model = model.autoshape() # for PIL/cv2/np inputs and NMS
return model

except Exception as e:
Expand Down Expand Up @@ -108,11 +109,10 @@ def yolov5x(pretrained=False, channels=3, classes=80):

if __name__ == '__main__':
model = create(name='yolov5s', pretrained=True, channels=3, classes=80) # example
model = model.fuse().eval().autoshape() # for autoshaping of PIL/cv2/np inputs and NMS
model = model.fuse().autoshape() # for PIL/cv2/np inputs and NMS

# Verify inference
from PIL import Image

img = Image.open('data/images/zidane.jpg')
y = model(img)
print(y[0].shape)
imgs = [Image.open(x) for x in Path('data/images').glob('*.jpg')]
results = model(imgs)
results.show()
results.print()
93 changes: 71 additions & 22 deletions models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,11 @@
import numpy as np
import torch
import torch.nn as nn
from PIL import Image, ImageDraw

from utils.datasets import letterbox
from utils.general import non_max_suppression, make_divisible, scale_coords
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
from utils.plots import color_list


def autopad(k, p=None): # kernel, padding
Expand Down Expand Up @@ -125,47 +127,94 @@ class autoShape(nn.Module):

def __init__(self, model):
super(autoShape, self).__init__()
self.model = model
self.model = model.eval()

def forward(self, x, size=640, augment=False, profile=False):
def forward(self, imgs, size=640, augment=False, profile=False):
# supports inference from various sources. For height=720, width=1280, RGB images example inputs are:
# opencv: x = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
# PIL: x = Image.open('image.jpg') # HWC x(720,1280,3)
# numpy: x = np.zeros((720,1280,3)) # HWC
# torch: x = torch.zeros(16,3,720,1280) # BCHW
# multiple: x = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
# opencv: imgs = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
# PIL: imgs = Image.open('image.jpg') # HWC x(720,1280,3)
# numpy: imgs = np.zeros((720,1280,3)) # HWC
# torch: imgs = torch.zeros(16,3,720,1280) # BCHW
# multiple: imgs = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images

p = next(self.model.parameters()) # for device and type
if isinstance(x, torch.Tensor): # torch
return self.model(x.to(p.device).type_as(p), augment, profile) # inference
if isinstance(imgs, torch.Tensor): # torch
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference

# Pre-process
if not isinstance(x, list):
x = [x]
if not isinstance(imgs, list):
imgs = [imgs]
shape0, shape1 = [], [] # image and inference shapes
batch = range(len(x)) # batch size
batch = range(len(imgs)) # batch size
for i in batch:
x[i] = np.array(x[i]) # to numpy
x[i] = x[i][:, :, :3] if x[i].ndim == 3 else np.tile(x[i][:, :, None], 3) # enforce 3ch input
s = x[i].shape[:2] # HWC
imgs[i] = np.array(imgs[i]) # to numpy
imgs[i] = imgs[i][:, :, :3] if imgs[i].ndim == 3 else np.tile(imgs[i][:, :, None], 3) # enforce 3ch input
s = imgs[i].shape[:2] # HWC
shape0.append(s) # image shape
g = (size / max(s)) # gain
shape1.append([y * g for y in s])
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
x = [letterbox(x[i], new_shape=shape1, auto=False)[0] for i in batch] # pad
x = [letterbox(imgs[i], new_shape=shape1, auto=False)[0] for i in batch] # pad
x = np.stack(x, 0) if batch[-1] else x[0][None] # stack
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32

# Inference
x = self.model(x, augment, profile) # forward
x = non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
with torch.no_grad():
y = self.model(x, augment, profile)[0] # forward
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS

# Post-process
for i in batch:
if x[i] is not None:
x[i][:, :4] = scale_coords(shape1, x[i][:, :4], shape0[i])
return x
if y[i] is not None:
y[i][:, :4] = scale_coords(shape1, y[i][:, :4], shape0[i])

return Detections(imgs, y, self.names)


class Detections:
# detections class for YOLOv5 inference results
def __init__(self, imgs, pred, names=None):
super(Detections, self).__init__()
self.imgs = imgs # list of images as numpy arrays
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
self.names = names # class names
self.xyxy = pred # xyxy pixels
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
gn = [torch.Tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.]) for im in imgs] # normalization gains
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized

def display(self, pprint=False, show=False, save=False):
colors = color_list()
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
if pred is not None:
for c in pred[:, -1].unique():
n = (pred[:, -1] == c).sum() # detections per class
str += f'{n} {self.names[int(c)]}s, ' # add to string
if show or save:
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
for *box, conf, cls in pred: # xyxy, confidence, class
# str += '%s %.2f, ' % (names[int(cls)], conf) # label
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot
if save:
f = f'results{i}.jpg'
str += f"saved to '{f}'"
img.save(f) # save
if show:
img.show(f'Image {i}') # show
if pprint:
print(str)

def print(self):
self.display(pprint=True) # print results

def show(self):
self.display(show=True) # show results

def save(self):
self.display(save=True) # save results


class Flatten(nn.Module):
Expand Down
2 changes: 1 addition & 1 deletion test.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ def test(data,
tcls = labels[:, 0].tolist() if nl else [] # target class
seen += 1

if pred is None:
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
continue
Expand Down
6 changes: 3 additions & 3 deletions utils/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,7 +142,7 @@ def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)

def xyxy2xywh(x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
y[:, 2] = x[:, 2] - x[:, 0] # width
Expand All @@ -152,7 +152,7 @@ def xyxy2xywh(x):

def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
Expand Down Expand Up @@ -280,7 +280,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False,
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)

t = time.time()
output = [None] * prediction.shape[0]
output = [torch.zeros(0, 6)] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
Expand Down

0 comments on commit f542926

Please sign in to comment.