Skip to content

Commit

Permalink
[SPARK-17017][FOLLOW-UP][ML] Refactor of ChiSqSelector and add ML Pyt…
Browse files Browse the repository at this point in the history
…hon API.

## What changes were proposed in this pull request?
apache#14597 modified ```ChiSqSelector``` to support ```fpr``` type selector, however, it left some issue need to be addressed:
* We should allow users to set selector type explicitly rather than switching them by using different setting function, since the setting order will involves some unexpected issue. For example, if users both set ```numTopFeatures``` and ```percentile```, it will train ```kbest``` or ```percentile``` model based on the order of setting (the latter setting one will be trained). This make users confused, and we should allow users to set selector type explicitly. We handle similar issues at other place of ML code base such as ```GeneralizedLinearRegression``` and ```LogisticRegression```.
* Meanwhile, if there are more than one parameter except ```alpha``` can be set for ```fpr``` model, we can not handle it elegantly in the existing framework. And similar issues for ```kbest``` and ```percentile``` model. Setting selector type explicitly can solve this issue also.
* If setting selector type explicitly by users is allowed, we should handle param interaction such as if users set ```selectorType = percentile``` and ```alpha = 0.1```, we should notify users the parameter ```alpha``` will take no effect. We should handle complex parameter interaction checks at ```transformSchema```. (FYI apache#11620)
* We should use lower case of the selector type names to follow MLlib convention.
* Add ML Python API.

## How was this patch tested?
Unit test.

Author: Yanbo Liang <[email protected]>

Closes apache#15214 from yanboliang/spark-17017.
  • Loading branch information
yanboliang authored and srowen committed Sep 26, 2016
1 parent 59d87d2 commit ac65139
Show file tree
Hide file tree
Showing 7 changed files with 206 additions and 128 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util._
import org.apache.spark.mllib.feature
import org.apache.spark.mllib.feature.ChiSqSelectorType
import org.apache.spark.mllib.feature.{ChiSqSelector => OldChiSqSelector}
import org.apache.spark.mllib.linalg.{Vectors => OldVectors}
import org.apache.spark.mllib.regression.{LabeledPoint => OldLabeledPoint}
import org.apache.spark.rdd.RDD
Expand All @@ -44,7 +44,9 @@ private[feature] trait ChiSqSelectorParams extends Params
/**
* Number of features that selector will select (ordered by statistic value descending). If the
* number of features is less than numTopFeatures, then this will select all features.
* Only applicable when selectorType = "kbest".
* The default value of numTopFeatures is 50.
*
* @group param
*/
final val numTopFeatures = new IntParam(this, "numTopFeatures",
Expand All @@ -56,6 +58,11 @@ private[feature] trait ChiSqSelectorParams extends Params
/** @group getParam */
def getNumTopFeatures: Int = $(numTopFeatures)

/**
* Percentile of features that selector will select, ordered by statistics value descending.
* Only applicable when selectorType = "percentile".
* Default value is 0.1.
*/
final val percentile = new DoubleParam(this, "percentile",
"Percentile of features that selector will select, ordered by statistics value descending.",
ParamValidators.inRange(0, 1))
Expand All @@ -64,38 +71,40 @@ private[feature] trait ChiSqSelectorParams extends Params
/** @group getParam */
def getPercentile: Double = $(percentile)

final val alpha = new DoubleParam(this, "alpha",
"The highest p-value for features to be kept.",
/**
* The highest p-value for features to be kept.
* Only applicable when selectorType = "fpr".
* Default value is 0.05.
*/
final val alpha = new DoubleParam(this, "alpha", "The highest p-value for features to be kept.",
ParamValidators.inRange(0, 1))
setDefault(alpha -> 0.05)

/** @group getParam */
def getAlpha: Double = $(alpha)

/**
* The ChiSqSelector supports KBest, Percentile, FPR selection,
* which is the same as ChiSqSelectorType defined in MLLIB.
* when call setNumTopFeatures, the selectorType is set to KBest
* when call setPercentile, the selectorType is set to Percentile
* when call setAlpha, the selectorType is set to FPR
* The selector type of the ChisqSelector.
* Supported options: "kbest" (default), "percentile" and "fpr".
*/
final val selectorType = new Param[String](this, "selectorType",
"ChiSqSelector Type: KBest, Percentile, FPR")
setDefault(selectorType -> ChiSqSelectorType.KBest.toString)
"The selector type of the ChisqSelector. " +
"Supported options: kbest (default), percentile and fpr.",
ParamValidators.inArray[String](OldChiSqSelector.supportedSelectorTypes.toArray))
setDefault(selectorType -> OldChiSqSelector.KBest)

/** @group getParam */
def getChiSqSelectorType: String = $(selectorType)
def getSelectorType: String = $(selectorType)
}

/**
* Chi-Squared feature selection, which selects categorical features to use for predicting a
* categorical label.
* The selector supports three selection methods: `KBest`, `Percentile` and `FPR`.
* `KBest` chooses the `k` top features according to a chi-squared test.
* `Percentile` is similar but chooses a fraction of all features instead of a fixed number.
* `FPR` chooses all features whose false positive rate meets some threshold.
* By default, the selection method is `KBest`, the default number of top features is 50.
* User can use setNumTopFeatures, setPercentile and setAlpha to set different selection methods.
* The selector supports three selection methods: `kbest`, `percentile` and `fpr`.
* `kbest` chooses the `k` top features according to a chi-squared test.
* `percentile` is similar but chooses a fraction of all features instead of a fixed number.
* `fpr` chooses all features whose false positive rate meets some threshold.
* By default, the selection method is `kbest`, the default number of top features is 50.
*/
@Since("1.6.0")
final class ChiSqSelector @Since("1.6.0") (@Since("1.6.0") override val uid: String)
Expand All @@ -104,24 +113,21 @@ final class ChiSqSelector @Since("1.6.0") (@Since("1.6.0") override val uid: Str
@Since("1.6.0")
def this() = this(Identifiable.randomUID("chiSqSelector"))

/** @group setParam */
@Since("2.1.0")
def setSelectorType(value: String): this.type = set(selectorType, value)

/** @group setParam */
@Since("1.6.0")
def setNumTopFeatures(value: Int): this.type = {
set(selectorType, ChiSqSelectorType.KBest.toString)
set(numTopFeatures, value)
}
def setNumTopFeatures(value: Int): this.type = set(numTopFeatures, value)

/** @group setParam */
@Since("2.1.0")
def setPercentile(value: Double): this.type = {
set(selectorType, ChiSqSelectorType.Percentile.toString)
set(percentile, value)
}
def setPercentile(value: Double): this.type = set(percentile, value)

/** @group setParam */
@Since("2.1.0")
def setAlpha(value: Double): this.type = {
set(selectorType, ChiSqSelectorType.FPR.toString)
set(alpha, value)
}
def setAlpha(value: Double): this.type = set(alpha, value)

/** @group setParam */
@Since("1.6.0")
Expand All @@ -143,23 +149,23 @@ final class ChiSqSelector @Since("1.6.0") (@Since("1.6.0") override val uid: Str
case Row(label: Double, features: Vector) =>
OldLabeledPoint(label, OldVectors.fromML(features))
}
var selector = new feature.ChiSqSelector()
ChiSqSelectorType.withName($(selectorType)) match {
case ChiSqSelectorType.KBest =>
selector.setNumTopFeatures($(numTopFeatures))
case ChiSqSelectorType.Percentile =>
selector.setPercentile($(percentile))
case ChiSqSelectorType.FPR =>
selector.setAlpha($(alpha))
case errorType =>
throw new IllegalStateException(s"Unknown ChiSqSelector Type: $errorType")
}
val selector = new feature.ChiSqSelector()
.setSelectorType($(selectorType))
.setNumTopFeatures($(numTopFeatures))
.setPercentile($(percentile))
.setAlpha($(alpha))
val model = selector.fit(input)
copyValues(new ChiSqSelectorModel(uid, model).setParent(this))
}

@Since("1.6.0")
override def transformSchema(schema: StructType): StructType = {
val otherPairs = OldChiSqSelector.supportedTypeAndParamPairs.filter(_._1 != $(selectorType))
otherPairs.foreach { case (_, paramName: String) =>
if (isSet(getParam(paramName))) {
logWarning(s"Param $paramName will take no effect when selector type = ${$(selectorType)}.")
}
}
SchemaUtils.checkColumnType(schema, $(featuresCol), new VectorUDT)
SchemaUtils.checkNumericType(schema, $(labelCol))
SchemaUtils.appendColumn(schema, $(outputCol), new VectorUDT)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -629,35 +629,23 @@ private[python] class PythonMLLibAPI extends Serializable {
}

/**
* Java stub for ChiSqSelector.fit() when the seletion type is KBest. This stub returns a
* Java stub for ChiSqSelector.fit(). This stub returns a
* handle to the Java object instead of the content of the Java object.
* Extra care needs to be taken in the Python code to ensure it gets freed on
* exit; see the Py4J documentation.
*/
def fitChiSqSelectorKBest(numTopFeatures: Int,
data: JavaRDD[LabeledPoint]): ChiSqSelectorModel = {
new ChiSqSelector().setNumTopFeatures(numTopFeatures).fit(data.rdd)
}

/**
* Java stub for ChiSqSelector.fit() when the selection type is Percentile. This stub returns a
* handle to the Java object instead of the content of the Java object.
* Extra care needs to be taken in the Python code to ensure it gets freed on
* exit; see the Py4J documentation.
*/
def fitChiSqSelectorPercentile(percentile: Double,
data: JavaRDD[LabeledPoint]): ChiSqSelectorModel = {
new ChiSqSelector().setPercentile(percentile).fit(data.rdd)
}

/**
* Java stub for ChiSqSelector.fit() when the selection type is FPR. This stub returns a
* handle to the Java object instead of the content of the Java object.
* Extra care needs to be taken in the Python code to ensure it gets freed on
* exit; see the Py4J documentation.
*/
def fitChiSqSelectorFPR(alpha: Double, data: JavaRDD[LabeledPoint]): ChiSqSelectorModel = {
new ChiSqSelector().setAlpha(alpha).fit(data.rdd)
def fitChiSqSelector(
selectorType: String,
numTopFeatures: Int,
percentile: Double,
alpha: Double,
data: JavaRDD[LabeledPoint]): ChiSqSelectorModel = {
new ChiSqSelector()
.setSelectorType(selectorType)
.setNumTopFeatures(numTopFeatures)
.setPercentile(percentile)
.setAlpha(alpha)
.fit(data.rdd)
}

/**
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,12 +32,6 @@ import org.apache.spark.rdd.RDD
import org.apache.spark.SparkContext
import org.apache.spark.sql.{Row, SparkSession}

@Since("2.1.0")
private[spark] object ChiSqSelectorType extends Enumeration {
type SelectorType = Value
val KBest, Percentile, FPR = Value
}

/**
* Chi Squared selector model.
*
Expand Down Expand Up @@ -166,19 +160,18 @@ object ChiSqSelectorModel extends Loader[ChiSqSelectorModel] {

/**
* Creates a ChiSquared feature selector.
* The selector supports three selection methods: `KBest`, `Percentile` and `FPR`.
* `KBest` chooses the `k` top features according to a chi-squared test.
* `Percentile` is similar but chooses a fraction of all features instead of a fixed number.
* `FPR` chooses all features whose false positive rate meets some threshold.
* By default, the selection method is `KBest`, the default number of top features is 50.
* User can use setNumTopFeatures, setPercentile and setAlpha to set different selection methods.
* The selector supports three selection methods: `kbest`, `percentile` and `fpr`.
* `kbest` chooses the `k` top features according to a chi-squared test.
* `percentile` is similar but chooses a fraction of all features instead of a fixed number.
* `fpr` chooses all features whose false positive rate meets some threshold.
* By default, the selection method is `kbest`, the default number of top features is 50.
*/
@Since("1.3.0")
class ChiSqSelector @Since("2.1.0") () extends Serializable {
var numTopFeatures: Int = 50
var percentile: Double = 0.1
var alpha: Double = 0.05
var selectorType = ChiSqSelectorType.KBest
var selectorType = ChiSqSelector.KBest

/**
* The is the same to call this() and setNumTopFeatures(numTopFeatures)
Expand All @@ -192,28 +185,27 @@ class ChiSqSelector @Since("2.1.0") () extends Serializable {
@Since("1.6.0")
def setNumTopFeatures(value: Int): this.type = {
numTopFeatures = value
selectorType = ChiSqSelectorType.KBest
this
}

@Since("2.1.0")
def setPercentile(value: Double): this.type = {
require(0.0 <= value && value <= 1.0, "Percentile must be in [0,1]")
percentile = value
selectorType = ChiSqSelectorType.Percentile
this
}

@Since("2.1.0")
def setAlpha(value: Double): this.type = {
require(0.0 <= value && value <= 1.0, "Alpha must be in [0,1]")
alpha = value
selectorType = ChiSqSelectorType.FPR
this
}

@Since("2.1.0")
def setChiSqSelectorType(value: ChiSqSelectorType.Value): this.type = {
def setSelectorType(value: String): this.type = {
require(ChiSqSelector.supportedSelectorTypes.toSeq.contains(value),
s"ChiSqSelector Type: $value was not supported.")
selectorType = value
this
}
Expand All @@ -230,11 +222,11 @@ class ChiSqSelector @Since("2.1.0") () extends Serializable {
val chiSqTestResult = Statistics.chiSqTest(data)
.zipWithIndex.sortBy { case (res, _) => -res.statistic }
val features = selectorType match {
case ChiSqSelectorType.KBest => chiSqTestResult
case ChiSqSelector.KBest => chiSqTestResult
.take(numTopFeatures)
case ChiSqSelectorType.Percentile => chiSqTestResult
case ChiSqSelector.Percentile => chiSqTestResult
.take((chiSqTestResult.length * percentile).toInt)
case ChiSqSelectorType.FPR => chiSqTestResult
case ChiSqSelector.FPR => chiSqTestResult
.filter{ case (res, _) => res.pValue < alpha }
case errorType =>
throw new IllegalStateException(s"Unknown ChiSqSelector Type: $errorType")
Expand All @@ -244,3 +236,22 @@ class ChiSqSelector @Since("2.1.0") () extends Serializable {
}
}

@Since("2.1.0")
object ChiSqSelector {

/** String name for `kbest` selector type. */
private[spark] val KBest: String = "kbest"

/** String name for `percentile` selector type. */
private[spark] val Percentile: String = "percentile"

/** String name for `fpr` selector type. */
private[spark] val FPR: String = "fpr"

/** Set of selector type and param pairs that ChiSqSelector supports. */
private[spark] val supportedTypeAndParamPairs = Set(KBest -> "numTopFeatures",
Percentile -> "percentile", FPR -> "alpha")

/** Set of selector types that ChiSqSelector supports. */
private[spark] val supportedSelectorTypes = supportedTypeAndParamPairs.map(_._1)
}
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@ class ChiSqSelectorSuite extends SparkFunSuite with MLlibTestSparkContext
.toDF("label", "data", "preFilteredData")

val selector = new ChiSqSelector()
.setSelectorType("kbest")
.setNumTopFeatures(1)
.setFeaturesCol("data")
.setLabelCol("label")
Expand All @@ -60,12 +61,28 @@ class ChiSqSelectorSuite extends SparkFunSuite with MLlibTestSparkContext
assert(vec1 ~== vec2 absTol 1e-1)
}

selector.setPercentile(0.34).fit(df).transform(df)
.select("filtered", "preFilteredData").collect().foreach {
case Row(vec1: Vector, vec2: Vector) =>
assert(vec1 ~== vec2 absTol 1e-1)
}
selector.setSelectorType("percentile").setPercentile(0.34).fit(df).transform(df)
.select("filtered", "preFilteredData").collect().foreach {
case Row(vec1: Vector, vec2: Vector) =>
assert(vec1 ~== vec2 absTol 1e-1)
}

val preFilteredData2 = Seq(
Vectors.dense(8.0, 7.0),
Vectors.dense(0.0, 9.0),
Vectors.dense(0.0, 9.0),
Vectors.dense(8.0, 9.0)
)

val df2 = sc.parallelize(data.zip(preFilteredData2))
.map(x => (x._1.label, x._1.features, x._2))
.toDF("label", "data", "preFilteredData")

selector.setSelectorType("fpr").setAlpha(0.2).fit(df2).transform(df2)
.select("filtered", "preFilteredData").collect().foreach {
case Row(vec1: Vector, vec2: Vector) =>
assert(vec1 ~== vec2 absTol 1e-1)
}
}

test("ChiSqSelector read/write") {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ class ChiSqSelectorSuite extends SparkFunSuite with MLlibTestSparkContext {
LabeledPoint(1.0, Vectors.dense(Array(4.0))),
LabeledPoint(1.0, Vectors.dense(Array(4.0))),
LabeledPoint(2.0, Vectors.dense(Array(9.0))))
val model = new ChiSqSelector().setAlpha(0.1).fit(labeledDiscreteData)
val model = new ChiSqSelector().setSelectorType("fpr").setAlpha(0.1).fit(labeledDiscreteData)
val filteredData = labeledDiscreteData.map { lp =>
LabeledPoint(lp.label, model.transform(lp.features))
}.collect().toSet
Expand Down
Loading

0 comments on commit ac65139

Please sign in to comment.