Skip to content

Commit

Permalink
[SPARK-17616][SQL] Support a single distinct aggregate combined with …
Browse files Browse the repository at this point in the history
…a non-partial aggregate

## What changes were proposed in this pull request?
We currently cannot execute an aggregate that contains a single distinct aggregate function and an one or more non-partially plannable aggregate functions, for example:
```sql
select   grp,
         collect_list(col1),
         count(distinct col2)
from     tbl_a
group by 1
```
This is a regression from Spark 1.6. This is caused by the fact that the single distinct aggregation code path assumes that all aggregates can be planned in two phases (is partially aggregatable). This PR works around this issue by triggering the `RewriteDistinctAggregates` in such cases (this is similar to the approach taken in 1.6).

## How was this patch tested?
Created `RewriteDistinctAggregatesSuite` which checks if the aggregates with distinct aggregate functions get rewritten into two `Aggregates` and an `Expand`. Added a regression test to `DataFrameAggregateSuite`.

Author: Herman van Hovell <[email protected]>

Closes apache#15187 from hvanhovell/SPARK-17616.
  • Loading branch information
hvanhovell committed Sep 22, 2016
1 parent 3cdae0f commit 0d63487
Show file tree
Hide file tree
Showing 3 changed files with 111 additions and 9 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -119,14 +119,16 @@ object RewriteDistinctAggregates extends Rule[LogicalPlan] {
.filter(_.isDistinct)
.groupBy(_.aggregateFunction.children.toSet)

// Aggregation strategy can handle the query with single distinct
if (distinctAggGroups.size > 1) {
// Check if the aggregates contains functions that do not support partial aggregation.
val existsNonPartial = aggExpressions.exists(!_.aggregateFunction.supportsPartial)

// Aggregation strategy can handle queries with a single distinct group and partial aggregates.
if (distinctAggGroups.size > 1 || (distinctAggGroups.size == 1 && existsNonPartial)) {
// Create the attributes for the grouping id and the group by clause.
val gid =
new AttributeReference("gid", IntegerType, false)(isGenerated = true)
val gid = AttributeReference("gid", IntegerType, nullable = false)(isGenerated = true)
val groupByMap = a.groupingExpressions.collect {
case ne: NamedExpression => ne -> ne.toAttribute
case e => e -> new AttributeReference(e.sql, e.dataType, e.nullable)()
case e => e -> AttributeReference(e.sql, e.dataType, e.nullable)()
}
val groupByAttrs = groupByMap.map(_._2)

Expand All @@ -135,9 +137,7 @@ object RewriteDistinctAggregates extends Rule[LogicalPlan] {
def patchAggregateFunctionChildren(
af: AggregateFunction)(
attrs: Expression => Expression): AggregateFunction = {
af.withNewChildren(af.children.map {
case afc => attrs(afc)
}).asInstanceOf[AggregateFunction]
af.withNewChildren(af.children.map(attrs)).asInstanceOf[AggregateFunction]
}

// Setup unique distinct aggregate children.
Expand Down Expand Up @@ -265,5 +265,5 @@ object RewriteDistinctAggregates extends Rule[LogicalPlan] {
// NamedExpression. This is done to prevent collisions between distinct and regular aggregate
// children, in this case attribute reuse causes the input of the regular aggregate to bound to
// the (nulled out) input of the distinct aggregate.
e -> new AttributeReference(e.sql, e.dataType, true)()
e -> AttributeReference(e.sql, e.dataType, nullable = true)()
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.optimizer

import org.apache.spark.sql.catalyst.SimpleCatalystConf
import org.apache.spark.sql.catalyst.analysis.{Analyzer, EmptyFunctionRegistry}
import org.apache.spark.sql.catalyst.catalog.{InMemoryCatalog, SessionCatalog}
import org.apache.spark.sql.catalyst.dsl.expressions._
import org.apache.spark.sql.catalyst.dsl.plans._
import org.apache.spark.sql.catalyst.expressions.{If, Literal}
import org.apache.spark.sql.catalyst.expressions.aggregate.{CollectSet, Count}
import org.apache.spark.sql.catalyst.plans.PlanTest
import org.apache.spark.sql.catalyst.plans.logical.{Aggregate, Expand, LocalRelation, LogicalPlan}
import org.apache.spark.sql.types.{IntegerType, StringType}

class RewriteDistinctAggregatesSuite extends PlanTest {
val conf = SimpleCatalystConf(caseSensitiveAnalysis = false, groupByOrdinal = false)
val catalog = new SessionCatalog(new InMemoryCatalog, EmptyFunctionRegistry, conf)
val analyzer = new Analyzer(catalog, conf)

val nullInt = Literal(null, IntegerType)
val nullString = Literal(null, StringType)
val testRelation = LocalRelation('a.string, 'b.string, 'c.string, 'd.string, 'e.int)

private def checkRewrite(rewrite: LogicalPlan): Unit = rewrite match {
case Aggregate(_, _, Aggregate(_, _, _: Expand)) =>
case _ => fail(s"Plan is not rewritten:\n$rewrite")
}

test("single distinct group") {
val input = testRelation
.groupBy('a)(countDistinct('e))
.analyze
val rewrite = RewriteDistinctAggregates(input)
comparePlans(input, rewrite)
}

test("single distinct group with partial aggregates") {
val input = testRelation
.groupBy('a, 'd)(
countDistinct('e, 'c).as('agg1),
max('b).as('agg2))
.analyze
val rewrite = RewriteDistinctAggregates(input)
comparePlans(input, rewrite)
}

test("single distinct group with non-partial aggregates") {
val input = testRelation
.groupBy('a, 'd)(
countDistinct('e, 'c).as('agg1),
CollectSet('b).toAggregateExpression().as('agg2))
.analyze
checkRewrite(RewriteDistinctAggregates(input))
}

test("multiple distinct groups") {
val input = testRelation
.groupBy('a)(countDistinct('b, 'c), countDistinct('d))
.analyze
checkRewrite(RewriteDistinctAggregates(input))
}

test("multiple distinct groups with partial aggregates") {
val input = testRelation
.groupBy('a)(countDistinct('b, 'c), countDistinct('d), sum('e))
.analyze
checkRewrite(RewriteDistinctAggregates(input))
}

test("multiple distinct groups with non-partial aggregates") {
val input = testRelation
.groupBy('a)(
countDistinct('b, 'c),
countDistinct('d),
CollectSet('b).toAggregateExpression())
.analyze
checkRewrite(RewriteDistinctAggregates(input))
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -493,4 +493,12 @@ class DataFrameAggregateSuite extends QueryTest with SharedSQLContext {
Row(new java.math.BigDecimal(2.0), new java.math.BigDecimal(1.5)),
Row(new java.math.BigDecimal(3.0), new java.math.BigDecimal(1.5))))
}

test("SPARK-17616: distinct aggregate combined with a non-partial aggregate") {
val df = Seq((1, 3, "a"), (1, 2, "b"), (3, 4, "c"), (3, 4, "c"), (3, 5, "d"))
.toDF("x", "y", "z")
checkAnswer(
df.groupBy($"x").agg(countDistinct($"y"), sort_array(collect_list($"z"))),
Seq(Row(1, 2, Seq("a", "b")), Row(3, 2, Seq("c", "c", "d"))))
}
}

0 comments on commit 0d63487

Please sign in to comment.