Jiahang Cao*, Ziqing Wang*, Hanzhong Guo*, Hao Cheng, Qiang Zhang, Renjing Xu†
- (Optional) Creating conda environment.
conda create -n SDDPM python=3.8
conda activate SDDPM
- Installing dependencies.
git clone https://github.com/AndyCao1125/SDDPM.git
cd SDDPM
pip install -r requirements.txt
Codes for training Spiking Denoising Diffusion Probabilistic models.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main_SDDPM.py \
--train \
--dataset='cifar10' \
--beta_1=1e-4 --beta_T=0.02 \
--img_size=32 --timestep=4 --img_ch=3 \
--parallel=True --sample_step=0 \
--total_steps=500001 \
--logdir='./logs' \
--wandb
Codes for evaluating the image generation quantitative results, including FID and IS score.
[Update March.19th] The checkpoint of SDDPM in CIFAR-10 is now released. You can download the checkpoint through this link.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main_SDDPM.py \
--eval \
--pre_trained_path 'your/model' \
--num_images 50000 \
--fid_cache './stats/cifar10.train.npz'
If you find our work useful, please consider citing:
@inproceedings{cao2024spiking,
title={Spiking denoising diffusion probabilistic models},
author={Cao, Jiahang and Wang, Ziqing and Guo, Hanzhong and Cheng, Hao and Zhang, Qiang and Xu, Renjing},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={4912--4921},
year={2024}
}
We thank the authors (pytorch-ddpm, spikingjelly) for their open-sourced codes.
For any help or issues of this project, please contact [email protected].