Skip to content

Operators

Ben edited this page Mar 5, 2015 · 12 revisions

summary: Operators used for this project are defined

Only operators necessary for mathematical physics are included. Operators like "subset of" are not included. I don't include casting, ie int() and float(). I don't include bitwise operations or shifts.
https://en.wikipedia.org/wiki/List_of_mathematical_symbols

One argument operators

Trig functions

https://en.wikipedia.org/wiki/Trigonometric_functions

sin()      sine
cos()      cosine
tan()      tangent
cot()      cotangent
sec()
csc()

Inverse Trig functions

https://en.wikipedia.org/wiki/Inverse_trigonometric_functions

arcsin()
arccos()
arctan()
arccot()
arcsec()
arccsc()

Hyperbolic Trig functions

https://en.wikipedia.org/wiki/Hyperbolic_function

sinh()     hyperbolic sine
cosh()     hyperbolic cosine
tanh()     hyperbolic tangent
coth()     hyperbolic cotangent 
sech()
csch()

Inverse Hyperbolic Trig functions

asinh()    inverse hyperbolic sine
acosh()    inverse hyperbolic cosine
atanh()    inverse hyperbolic tangent
acoth()    inverse hyperbolic cotangent
asech()    inverse hyperbolic 
acsch()    inverse hyperbolic 

Other single-argument operators

exp()                    https://en.wikipedia.org/wiki/Exponential_function
abs()                    absolute value
ln()                     natural log
\mathcal{}               https://en.wikipedia.org/wiki/Laplace_transform
curl(), aka \nabla x     https://en.wikipedia.org/wiki/Curl_%28mathematics%29
gradient(), aka \nabla   https://en.wikipedia.org/wiki/Gradient
div(), aka \nabla \cdot  https://en.wikipedia.org/wiki/Divergence
min()
max()
floor()
ceil()
\sqrt{}                  https://en.wikipedia.org/wiki/Square_root
det()                    https://en.wikipedia.org/wiki/Determinant
!                        https://en.wikipedia.org/wiki/Factorial
^{\dagger}   Hermitian conjugate
^{T}         transpose of matrix

Two argument operators

*            multiplication
x            cross product
\            division
^            to the power
\cdot        dot product
+            addition
\int d       indefinite integral
\oint d      indefinite surface integral
-            subtraction
%            modulo
log_{}()     log, arbitrary base, default base 10
\sqrt^{}()   https://en.wikipedia.org/wiki/Nth_root    equivalent to raising to inverse power
\frac{d}{d}  https://en.wikipedia.org/wiki/Derivative
\frac{\partial}{\partial}   https://en.wikipedia.org/wiki/Partial_derivative

relation (two argument) operators

The following two argument operators are limited to relating the left-hand side (LHS) and right-hand side (RHS) of a statement

=          equality
>          greater than
<          less than
<=         less than or equal to
>=         greater than or equal to
\approx    approximately equal to
\propto    proportional to
\neq       not equal to

Three arguments

\Pi_{}^{}()                    https://en.wikipedia.org/wiki/Multiplication#Capital_Pi_notation
\Sum_{}^{}                     https://en.wikipedia.org/wiki/Summation
\lim_{ \rightarrow }()         https://en.wikipedia.org/wiki/Limit_%28mathematics%29

Four arguments

\int^{}_{}() d()
\oint^{}_{}() d()

Example usage:

\int^{UPPER BOUND}_{LOWER BOUND} INTEGRAND d VARIABLE