Skip to content

Commit

Permalink
fix the problem of `element 0 of tensors does not require grad and do…
Browse files Browse the repository at this point in the history
…es not have a grad_fn`
  • Loading branch information
zhenqincn committed Aug 22, 2023
1 parent 287b152 commit 95d3a56
Show file tree
Hide file tree
Showing 6 changed files with 156 additions and 5 deletions.
26 changes: 26 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
Expand Up @@ -721,6 +721,32 @@ furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


---------------------------------------------------------------------------------
The implementations of quantization method of [QLoRA](https://arxiv.org/abs/2305.14314) for LLM is adapted from https://github.com/artidoro/qlora (MIT License)

MIT License

Copyright (c) 2023 Artidoro Pagnoni, Tim Dettmers

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
Expand Down
4 changes: 2 additions & 2 deletions federatedscope/core/configs/cfg_compression.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,10 @@ def extend_compression_cfg(cfg):

def assert_compression_cfg(cfg):

if cfg.quantization.method.lower() not in ['none', 'uniform']:
if cfg.quantization.method.lower() not in ['none', 'uniform', 'qlora']:
logger.warning(
f'Quantization method is expected to be one of ["none",'
f'"uniform"], but got "{cfg.quantization.method}". So we '
f'"uniform", "qlora"], but got "{cfg.quantization.method}". So we '
f'change it to "none"')

if cfg.quantization.method.lower(
Expand Down
44 changes: 44 additions & 0 deletions federatedscope/llm/baseline/qlora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
use_gpu: True
device: 2
early_stop:
patience: 0
federate:
mode: standalone
client_num: 1
total_round_num: 500
save_to: "llama.ckpt"
data:
root: data/
type: 'alpaca@llm'
splits: [0.98,0.01,0.01]
splitter: 'iid'
llm:
tok_len: 1000
chat:
max_len: 2000
adapter:
use: True
args: [ { 'adapter_package': 'peft', 'adapter_method': 'qlora', 'r': 8, 'lora_alpha': 16, 'lora_dropout': 0.05 } ]
dataloader:
batch_size: 1
model:
# type: 'decapoda-research/llama-7b-hf@huggingface_llm'
type: 'openlm-research/open_llama_3b@huggingface_llm'
# type: 'gpt2@huggingface_llm'
train:
local_update_steps: 30
batch_or_epoch: batch
optimizer:
lr: 0.0003
weight_decay: 0.0
is_enable_half: True
criterion:
type: CrossEntropyLoss
trainer:
type: llmtrainer
eval:
freq: 1
metrics: ['loss']
count_flops: False
quantization:
method: qlora
36 changes: 36 additions & 0 deletions federatedscope/llm/model/adapter_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ def enable_adapter(model, package, adapter, **kwargs):
PEFT: https://github.com/huggingface/peft
Support methods:
LoRA
QLoRA
Prefix Tuning
P-Tuning
Prompt Tuning
Expand All @@ -20,6 +21,41 @@ def enable_adapter(model, package, adapter, **kwargs):
from peft import LoraConfig
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, **kwargs)
model = get_peft_model(model, peft_config)
elif adapter == 'qlora':
# The implementation of QLoRA is adapted from https://github.com/artidoro/qlora
import bitsandbytes as bnb
from peft import LoraConfig
from peft.tuners.lora import LoraLayer
def find_all_linear_names(bits, model):
cls = bnb.nn.Linear4bit if bits == 4 else (bnb.nn.Linear8bitLt if bits == 8 else torch.nn.Linear)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
peft_config = LoraConfig(
r=kwargs['r'],
lora_alpha=kwargs['lora_alpha'],
target_modules=find_all_linear_names(bits=4, model=model),
lora_dropout=kwargs['lora_dropout'],
bias="none",
task_type=TaskType.CAUSAL_LM,
)
# without the following line, @https://github.com/huggingface/peft/issues/137
model.enable_input_require_grads()
model = get_peft_model(model, peft_config)
# for name, module in model.named_modules():
# if isinstance(module, LoraLayer):
# module = module.to(torch.bfloat16)
# if 'norm' in name:
# module = module.to(torch.float32)
# if 'lm_head' in name or 'embed_tokens' in name:
# if hasattr(module, 'weight'):
# if module.weight.dtype == torch.float32:
# module = module.to(torch.bfloat16)
elif adapter == 'prefix':
from peft import PrefixTuningConfig
peft_config = PrefixTuningConfig(task_type=TaskType.CAUSAL_LM,
Expand Down
48 changes: 46 additions & 2 deletions federatedscope/llm/model/model_builder.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
from federatedscope.llm.model.adapter_builder import AdapterModel
from transformers import BitsAndBytesConfig
import torch
from peft import prepare_model_for_kbit_training


def get_model_from_huggingface(model_name, config):
Expand All @@ -7,8 +10,49 @@ def get_model_from_huggingface(model_name, config):
kwargs = {}
if len(config.llm.cache.model):
kwargs['cache_dir'] = config.llm.cache.model

return AutoModelForCausalLM.from_pretrained(model_name, **kwargs)
if config.quantization.method == 'qlora':
# The implementation of QLoRA is adapted from https://github.com/artidoro/qlora
# kwargs['load_in_4bit'] = True
# kwargs['load_in_8bit'] = False
# kwargs['quantization_config'] = BitsAndBytesConfig(
# load_in_4bit=True,
# load_in_8bit=False,
# llm_int8_threshold=6.0,
# llm_int8_has_fp16_weight=False,
# # bnb_4bit_compute_dtype=torch.bfloat16,
# bnb_4bit_compute_dtype=torch.float32,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type='nf4'
# )
# kwargs['device_map'] = config.device
# kwargs['torch_dtype'] = torch.float32
# kwargs['trust_remote_code'] = False
# kwargs['use_auth_token'] = False
# print('\n\n\n\n\n\n\n\n\n\n\n LLM Model Loaded with K-bit quant \n\n\n\n\n\n\n\n\n\n\n ')
model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_4bit=True,
load_in_8bit=False,
device_map=config.device,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
# bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
),
torch_dtype=torch.bfloat16,
trust_remote_code=False,
use_auth_token=False
# cache_dir=config.llm.cache.model if len(config.llm.cache.model) else None
)
model.config.torch_dtype=torch.float32
return prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
else:
return AutoModelForCausalLM.from_pretrained(model_name, **kwargs)


def get_model_from_modelscope(model_name, config):
Expand Down
3 changes: 2 additions & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,8 +53,9 @@
'tokenizers==0.13.3',
'transformers==4.29.2',
'accelerate==0.20.3',
'peft==0.3.0',
'peft==0.4.0', # required by QLoRA: prepare_model_for_kbit_training
'sentencepiece==0.1.99',
'bitsandbytes==0.41.1'
]

benchmark_hpo_requires = [
Expand Down

0 comments on commit 95d3a56

Please sign in to comment.