Skip to content

Commit

Permalink
[Improvement] Rename config files according to the config name standa…
Browse files Browse the repository at this point in the history
…rd. (open-mmlab#508)

* Update tnt config

* Rename config files

* Update docs

* Update metafile in dev_scripts

* Fix some files

* Remove fp16 metafile and README.

* Fix names in metafiles.
  • Loading branch information
mzr1996 authored Nov 19, 2021
1 parent 598ecd4 commit 7977dc8
Show file tree
Hide file tree
Showing 173 changed files with 2,410 additions and 2,052 deletions.
14 changes: 7 additions & 7 deletions .dev_scripts/benchmark_regression/bench_train.yml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ Models:
Top 1 Accuracy: 73.85
Top 5 Accuracy: 91.53
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth
Config: configs/resnet/resnet34_b32x8_imagenet.py
Config: configs/resnet/resnet34_8xb32_in1k.py
Gpus: 8

- Name: vgg11bn
Expand All @@ -16,7 +16,7 @@ Models:
Top 1 Accuracy: 70.75
Top 5 Accuracy: 90.12
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth
Config: configs/vgg/vgg11bn_b32x8_imagenet.py
Config: configs/vgg/vgg11bn_8xb32_in1k.py
Gpus: 8

- Name: seresnet50
Expand All @@ -26,7 +26,7 @@ Models:
Top 1 Accuracy: 77.74
Top 5 Accuracy: 93.84
Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth
Config: configs/seresnet/seresnet50_b32x8_imagenet.py
Config: configs/seresnet/seresnet50_8xb32_in1k.py
Gpus: 8

- Name: resnext50
Expand All @@ -36,7 +36,7 @@ Models:
Top 1 Accuracy: 77.92
Top 5 Accuracy: 93.74
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_batch256_imagenet_20200708-c07adbb7.pth
Config: configs/resnext/resnext50_32x4d_b32x8_imagenet.py
Config: configs/resnext/resnext50-32x4d_8xb32_in1k.py
Gpus: 8

- Name: mobilenet
Expand All @@ -46,7 +46,7 @@ Models:
Top 1 Accuracy: 71.86
Top 5 Accuracy: 90.42
Weights: https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
Config: configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
Config: configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py
Gpus: 8
Months:
- 1
Expand All @@ -61,7 +61,7 @@ Models:
Top 1 Accuracy: 68.13
Top 5 Accuracy: 87.81
Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth
Config: configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py
Config: configs/shufflenet_v1/shufflenet-v1-1x_16xb64_in1k.py
Gpus: 16
Months:
- 2
Expand All @@ -76,7 +76,7 @@ Models:
Top 1 Accuracy: 81.18
Top 5 Accuracy: 95.61
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth
Config: configs/swin_transformer/swin_tiny_224_b16x64_300e_imagenet.py
Config: configs/swin_transformer/swin-tiny_16xb64_in1k.py
Gpus: 16
Months:
- 3
Expand Down
20 changes: 0 additions & 20 deletions configs/fp16/README.md

This file was deleted.

35 changes: 0 additions & 35 deletions configs/fp16/metafile.yml

This file was deleted.

8 changes: 5 additions & 3 deletions configs/fp16/resnet50_b32x8_fp16_dynamic_imagenet.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
_base_ = ['../resnet/resnet50_b32x8_imagenet.py']
_base_ = '../resnet/resnet50_8xb32-fp16-dynamic_in1k.py'

# fp16 settings
fp16 = dict(loss_scale='dynamic')
_deprecation_ = dict(
expected='../resnet/resnet50_8xb32-fp16-dynamic_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
8 changes: 5 additions & 3 deletions configs/fp16/resnet50_b32x8_fp16_imagenet.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
_base_ = ['../resnet/resnet50_b32x8_imagenet.py']
_base_ = '../resnet/resnet50_8xb32-fp16_in1k.py'

# fp16 settings
fp16 = dict(loss_scale=512.)
_deprecation_ = dict(
expected='../resnet/resnet50_8xb32-fp16_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
2 changes: 1 addition & 1 deletion configs/mobilenet_v2/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,4 +24,4 @@

| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:|
| MobileNet V2 | 3.5 | 0.319 | 71.86 | 90.42 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth) | [log](https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.log.json) |
| MobileNet V2 | 3.5 | 0.319 | 71.86 | 90.42 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth) | [log](https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.log.json) |
4 changes: 2 additions & 2 deletions configs/mobilenet_v2/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ Collections:
Version: v0.15.0

Models:
- Name: mobilenet_v2_b32x8_imagenet
- Name: mobilenet-v2_8xb32_in1k
Metadata:
FLOPs: 319000000
Parameters: 3500000
Expand All @@ -31,4 +31,4 @@ Models:
Top 5 Accuracy: 90.42
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
Config: configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
Config: configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py
6 changes: 6 additions & 0 deletions configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
_base_ = [
'../_base_/models/mobilenet_v2_1x.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256_epochstep.py',
'../_base_/default_runtime.py'
]
12 changes: 6 additions & 6 deletions configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
_base_ = [
'../_base_/models/mobilenet_v2_1x.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256_epochstep.py',
'../_base_/default_runtime.py'
]
_base_ = 'mobilenet-v2_8xb32_in1k.py'

_deprecation_ = dict(
expected='mobilenet-v2_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)
4 changes: 2 additions & 2 deletions configs/mobilenet_v3/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ Models:
Top 5 Accuracy: 87.41
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth
Config: configs/mobilenet_v3/mobilenet_v3_small_imagenet.py
Config: configs/mobilenet_v3/mobilenet-v3-small_8xb32_in1k.py
- Name: mobilenet_v3_large_imagenet
Metadata:
FLOPs: 230000000
Expand All @@ -39,4 +39,4 @@ Models:
Top 5 Accuracy: 91.34
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_large-3ea3c186.pth
Config: configs/mobilenet_v3/mobilenet_v3_large_imagenet.py
Config: configs/mobilenet_v3/mobilenet-v3-large_8xb32_in1k.py
158 changes: 158 additions & 0 deletions configs/mobilenet_v3/mobilenet-v3-large_8xb32_in1k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
# Refer to https://pytorch.org/blog/ml-models-torchvision-v0.9/#classification
# ----------------------------
# -[x] auto_augment='imagenet'
# -[x] batch_size=128 (per gpu)
# -[x] epochs=600
# -[x] opt='rmsprop'
# -[x] lr=0.064
# -[x] eps=0.0316
# -[x] alpha=0.9
# -[x] weight_decay=1e-05
# -[x] momentum=0.9
# -[x] lr_gamma=0.973
# -[x] lr_step_size=2
# -[x] nproc_per_node=8
# -[x] random_erase=0.2
# -[x] workers=16 (workers_per_gpu)
# - modify: RandomErasing use RE-M instead of RE-0

_base_ = [
'../_base_/models/mobilenet-v3-large_8xb32_in1k.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/default_runtime.py'
]

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

policies = [
[
dict(type='Posterize', bits=4, prob=0.4),
dict(type='Rotate', angle=30., prob=0.6)
],
[
dict(type='Solarize', thr=256 / 9 * 4, prob=0.6),
dict(type='AutoContrast', prob=0.6)
],
[dict(type='Equalize', prob=0.8),
dict(type='Equalize', prob=0.6)],
[
dict(type='Posterize', bits=5, prob=0.6),
dict(type='Posterize', bits=5, prob=0.6)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8)
],
[
dict(type='Solarize', thr=256 / 9 * 6, prob=0.6),
dict(type='Equalize', prob=0.6)
],
[dict(type='Posterize', bits=6, prob=0.8),
dict(type='Equalize', prob=1.)],
[
dict(type='Rotate', angle=10., prob=0.2),
dict(type='Solarize', thr=256 / 9, prob=0.6)
],
[
dict(type='Equalize', prob=0.6),
dict(type='Posterize', bits=5, prob=0.4)
],
[
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8),
dict(type='ColorTransform', magnitude=0., prob=0.4)
],
[
dict(type='Rotate', angle=30., prob=0.4),
dict(type='Equalize', prob=0.6)
],
[dict(type='Equalize', prob=0.0),
dict(type='Equalize', prob=0.8)],
[dict(type='Invert', prob=0.6),
dict(type='Equalize', prob=1.)],
[
dict(type='ColorTransform', magnitude=0.4, prob=0.6),
dict(type='Contrast', magnitude=0.8, prob=1.)
],
[
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8),
dict(type='ColorTransform', magnitude=0.2, prob=1.)
],
[
dict(type='ColorTransform', magnitude=0.8, prob=0.8),
dict(type='Solarize', thr=256 / 9 * 2, prob=0.8)
],
[
dict(type='Sharpness', magnitude=0.7, prob=0.4),
dict(type='Invert', prob=0.6)
],
[
dict(
type='Shear',
magnitude=0.3 / 9 * 5,
prob=0.6,
direction='horizontal'),
dict(type='Equalize', prob=1.)
],
[
dict(type='ColorTransform', magnitude=0., prob=0.4),
dict(type='Equalize', prob=0.6)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)
],
[
dict(type='Solarize', thr=256 / 9 * 4, prob=0.6),
dict(type='AutoContrast', prob=0.6)
],
[dict(type='Invert', prob=0.6),
dict(type='Equalize', prob=1.)],
[
dict(type='ColorTransform', magnitude=0.4, prob=0.6),
dict(type='Contrast', magnitude=0.8, prob=1.)
],
[dict(type='Equalize', prob=0.8),
dict(type='Equalize', prob=0.6)],
]

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224, backend='pillow'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='AutoAugment', policies=policies),
dict(
type='RandomErasing',
erase_prob=0.2,
mode='const',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=img_norm_cfg['mean']),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]

data = dict(
samples_per_gpu=128,
workers_per_gpu=4,
train=dict(pipeline=train_pipeline))
evaluation = dict(interval=10, metric='accuracy')

# optimizer
optimizer = dict(
type='RMSprop',
lr=0.064,
alpha=0.9,
momentum=0.9,
eps=0.0316,
weight_decay=1e-5)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=2, gamma=0.973, by_epoch=True)
runner = dict(type='EpochBasedRunner', max_epochs=600)
8 changes: 8 additions & 0 deletions configs/mobilenet_v3/mobilenet-v3-small_8xb16_cifar10.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
_base_ = [
'../_base_/models/mobilenet-v3-small_8xb16_cifar.py',
'../_base_/datasets/cifar10_bs16.py',
'../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
]

lr_config = dict(policy='step', step=[120, 170])
runner = dict(type='EpochBasedRunner', max_epochs=200)
Loading

0 comments on commit 7977dc8

Please sign in to comment.