Skip to content

A one stop repository for generative AI research updates, interview resources, notebooks and much more!

License

Notifications You must be signed in to change notification settings

aishwaryanr/awesome-generative-ai-guide

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

⭐ πŸ”– awesome-generative-ai-guide

Generative AI is experiencing rapid growth, and this repository serves as a comprehensive hub for updates on generative AI research, interview materials, notebooks, and more!

Explore the following resources:

  1. Monthly Best GenAI Papers List
  2. GenAI Interview Resources
  3. Applied LLMs Mastery 2024 (created by Aishwarya Naresh Reganti) course material
  4. List of all GenAI-related free courses (over 85 listed)
  5. List of code repositories/notebooks for developing generative AI applications

We'll be updating this repository regularly, so keep an eye out for the latest additions!

Happy Learning!


[June 2024] πŸ”₯πŸ”₯ Registrations are now open for "Generative AI Genius"

  • A 20-day free introductory course based on reels/short videos (no AI background needed!)
  • Check out more information and register here
  • Register soon! The course starts on July 8th 2024!

πŸ”ˆ Announcements


⭐ Best Gen AI Papers List (June 2024)

*Updated at the end of every month

Date Title Abstract Topics
28 June 2024 Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs Mathematical reasoning presents a significant challenge for Large Language Models (LLMs) due to the extensive and precise chain of reasoning required for accuracy. Ensuring the correctness of each reasoning step is critical. To address this, we aim to enhance the robustness and factuality of LLMs by learning from human feedback. However, Direct Preference Optimization (DPO) has shown limited benefits for long-chain mathematical reasoning, as models employing DPO struggle to identify detailed errors in incorrect answers. This limitation stems from a lack of fine-grained process supervision. We propose a simple, effective, and data-efficient method called Step-DPO, which treats individual reasoning steps as units for preference optimization rather than evaluating answers holistically. Additionally, we have developed a data construction pipeline for Step-DPO, enabling the creation of a high-quality dataset containing 10K step-wise preference pairs. We also observe that in DPO, self-generated data is more effective than data generated by humans or GPT-4, due to the latter's out-of-distribution nature. Our findings demonstrate that as few as 10K preference data pairs and fewer than 500 Step-DPO training steps can yield a nearly 3% gain in accuracy on MATH for models with over 70B parameters. Notably, Step-DPO, when applied to Qwen2-72B-Instruct, achieves scores of 70.8% and 94.0% on the test sets of MATH and GSM8K, respectively, surpassing a series of closed-source models, including GPT-4-1106, Claude-3-Opus, and Gemini-1.5-Pro. Mathematical Reasoning, Optimization
28 June 2024 Scaling Synthetic Data Creation with 1,000,000,000 Personas We propose a novel persona-driven data synthesis methodology that leverages various perspectives within a large language model (LLM) to create diverse synthetic data. To fully exploit this methodology at scale, we introduce Persona Hub -- a collection of 1 billion diverse personas automatically curated from web data. These 1 billion personas (~13% of the world's total population), acting as distributed carriers of world knowledge, can tap into almost every perspective encapsulated within the LLM, thereby facilitating the creation of diverse synthetic data at scale for various scenarios. By showcasing Persona Hub's use cases in synthesizing high-quality mathematical and logical reasoning problems, instructions (i.e., user prompts), knowledge-rich texts, game NPCs and tools (functions) at scale, we demonstrate persona-driven data synthesis is versatile, scalable, flexible, and easy to use, potentially driving a paradigm shift in synthetic data creation and applications in practice, which may have a profound impact on LLM research and development Synthetic Data Generation
27 June 2024 WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with LLMs, our work investigates jailbreaks from chatbot users who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks compared to state-of-the-art jailbreak methods. While many datasets exist for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed even when model weights are open. With WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. To mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (vanilla & adversarial) and 2) benign queries that resemble harmful queries in form but contain no harm. As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training. Through extensive experiments, we identify the training properties that enable an ideal balance of safety behaviors: appropriate safeguarding without over-refusal, effective handling of vanilla and adversarial queries, and minimal, if any, decrease in general capabilities. All components of WildJailbeak contribute to achieving balanced safety behaviors of models. Red Teaming, LLM Attacks
27 June 2024 LiveBench: A Challenging, Contamination-Free LLM Benchmark Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models. Benchmark, Dataset
26 June 2024 Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation Retrieval-augmented generation (RAG) has demonstrated effectiveness in mitigating the hallucination problem of large language models (LLMs). However, the difficulty of aligning the retriever with the diverse LLMs' knowledge preferences inevitably poses an inevitable challenge in developing a reliable RAG system. To address this issue, we propose DPA-RAG, a universal framework designed to align diverse knowledge preferences within RAG systems. Specifically, we initially introduce a preference knowledge construction pipline and incorporate five novel query augmentation strategies to alleviate preference data scarcity. Based on preference data, DPA-RAG accomplishes both external and internal preference alignment: 1) It jointly integrate pair-wise, point-wise, and contrastive preference alignment abilities into the reranker, achieving external preference alignment among RAG components. 2) It further introduces a pre-aligned stage before vanilla Supervised Fine-tuning (SFT), enabling LLMs to implicitly capture knowledge aligned with their reasoning preferences, achieving LLMs' internal alignment. Experimental results across four knowledge-intensive QA datasets demonstrate that DPA-RAG outperforms all baselines and seamlessly integrates both black-box and open-sourced LLM readers. Further qualitative analysis and discussions also provide empirical guidance for achieving reliable RAG systems. RAG, Alignment
21 June 2024 LongRAG: Enhancing Retrieval-Augmented Generation with Long-context LLMs In traditional RAG framework, the basic retrieval units are normally short. The common retrievers like DPR normally work with 100-word Wikipedia paragraphs. Such a design forces the retriever to search over a large corpus to find the needle' unit. In contrast, the readers only need to extract answers from the short retrieved units. Such an imbalanced heavy' retriever and light' reader design can lead to sub-optimal performance. In order to alleviate the imbalance, we propose a new framework LongRAG, consisting of a long retriever' and a `long reader'. LongRAG processes the entire Wikipedia into 4K-token units, which is 30x longer than before. By increasing the unit size, we significantly reduce the total units from 22M to 700K. This significantly lowers the burden of retriever, which leads to a remarkable retrieval score: answer recall@1=71% on NQ (previously 52%) and answer recall@2=72% (previously 47%) on HotpotQA (full-wiki). Then we feed the top-k retrieved units (approx 30K tokens) to an existing long-context LLM to perform zero-shot answer extraction. Without requiring any training, LongRAG achieves an EM of 62.7% on NQ, which is the best known result. LongRAG also achieves 64.3% on HotpotQA (full-wiki), which is on par of the SoTA model. Our study offers insights into the future roadmap for combining RAG with long-context LLMs. RAG
20 June 2024 Claude 3.5 Sonnet Today, we’re launching Claude 3.5 Sonnetβ€”our first release in the forthcoming Claude 3.5 model family. Claude 3.5 Sonnet raises the industry bar for intelligence, outperforming competitor models and Claude 3 Opus on a wide range of evaluations, with the speed and cost of our mid-tier model, Claude 3 Sonnet. Foundational LLM
20 June 2024 Can LLMs Learn by Teaching? A Preliminary Study Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, for humans, teaching not only improves students but also improves teachers. We ask: Can LLMs also learn by teaching (LbT)? If yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this ambitious agenda. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and provide noticeable improvements. Specifically, we design three methods, each mimicking one of the three levels of LbT in humans: observing students' feedback, learning from the feedback, and learning iteratively, with the goals of improving answer accuracy without training and improving models' inherent capability with fine-tuning. The findings are encouraging. For example, similar to LbT in human, we see that: (1) LbT can induce weak-to-strong generalization: strong models can improve themselves by teaching other weak models; (2) Diversity in students might help: teaching multiple students could be better than teaching one student or the teacher itself. We hope that this early promise can inspire future research on LbT and more broadly adopting the advanced techniques in education to improve LLMs. The code is available at https://github.com/imagination-research/lbt. LLM learning
19 June 2024 Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases. Leveraging LCLMs' ability to natively ingest and process entire corpora of information offers numerous advantages. It enhances user-friendliness by eliminating the need for specialized knowledge of tools, provides robust end-to-end modeling that minimizes cascading errors in complex pipelines, and allows for the application of sophisticated prompting techniques across the entire system. To assess this paradigm shift, we introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning. Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks. However, LCLMs still face challenges in areas like compositional reasoning that are required in SQL-like tasks. Notably, prompting strategies significantly influence performance, emphasizing the need for continued research as context lengths grow. Overall, LOFT provides a rigorous testing ground for LCLMs, showcasing their potential to supplant existing paradigms and tackle novel tasks as model capabilities scale. Long Context, Analysis
18 June 2024 Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges Offering a promising solution to the scalability challenges associated with human evaluation, the LLM-as-a-judge paradigm is rapidly gaining traction as an approach to evaluating large language models (LLMs). However, there are still many open questions about the strengths and weaknesses of this paradigm, and what potential biases it may hold. In this paper, we present a comprehensive study of the performance of various LLMs acting as judges. We leverage TriviaQA as a benchmark for assessing objective knowledge reasoning of LLMs and evaluate them alongside human annotations which we found to have a high inter-annotator agreement. Our study includes 9 judge models and 9 exam taker models -- both base and instruction-tuned. We assess the judge model's alignment across different model sizes, families, and judge prompts. Among other results, our research rediscovers the importance of using Cohen's kappa as a metric of alignment as opposed to simple percent agreement, showing that judges with high percent agreement can still assign vastly different scores. We find that both Llama-3 70B and GPT-4 Turbo have an excellent alignment with humans, but in terms of ranking exam taker models, they are outperformed by both JudgeLM-7B and the lexical judge Contains, which have up to 34 points lower human alignment. Through error analysis and various other studies, including the effects of instruction length and leniency bias, we hope to provide valuable lessons for using LLMs as judges in the future. Evaluation
18 June 2024 From RAGs to rich parameters: Probing how language models utilize external knowledge over parametric information for factual queries Retrieval Augmented Generation (RAG) enriches the ability of language models to reason using external context to augment responses for a given user prompt. This approach has risen in popularity due to practical applications in various applications of language models in search, question/answering, and chat-bots. However, the exact nature of how this approach works isn't clearly understood. In this paper, we mechanistically examine the RAG pipeline to highlight that language models take shortcut and have a strong bias towards utilizing only the context information to answer the question, while relying minimally on their parametric memory. We probe this mechanistic behavior in language models with: (i) Causal Mediation Analysis to show that the parametric memory is minimally utilized when answering a question and (ii) Attention Contributions and Knockouts to show that the last token residual stream do not get enriched from the subject token in the question, but gets enriched from other informative tokens in the context. We find this pronounced shortcut behaviour true across both LLaMa and Phi family of models. RAG, Knowledge Integration
18 June 2024 PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers . Since there is no benchmark that can examine Decision QA, we propose Decision QA benchmark, DQA. It has two scenarios, Locating and Building, constructed from two video games (Europa Universalis IV and Victoria 3) that have almost the same goal as Decision QA. To address Decision QA effectively, we also propose a new RAG technique called the iterative plan-then-retrieval augmented generation (PlanRAG). Our PlanRAG-based LM generates the plan for decision making as the first step, and the retriever generates the queries for data analysis as the second step. The proposed method outperforms the state-of-the-art iterative RAG method by 15.8% in the Locating scenario and by 7.4% in the Building scenario, respectively. We release our code and benchmark at this https URL. RAG, Knowledge Integration
17 June 2024 Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts We present Self-MoE, an approach that transforms a monolithic LLM into a compositional, modular system of self-specialized experts, named MiXSE (MiXture of Self-specialized Experts). Our approach leverages self-specialization, which constructs expert modules using self-generated synthetic data, each equipped with a shared base LLM and incorporating self-optimized routing. This allows for dynamic and capability-specific handling of various target tasks, enhancing overall capabilities, without extensive human-labeled data and added parameters. Our empirical results reveal that specializing LLMs may exhibit potential trade-offs in performances on non-specialized tasks. On the other hand, our Self-MoE demonstrates substantial improvements over the base LLM across diverse benchmarks such as knowledge, reasoning, math, and coding. It also consistently outperforms other methods, including instance merging and weight merging, while offering better flexibility and interpretability by design with semantic experts and routing. Our findings highlight the critical role of modularity and the potential of self-improvement in achieving efficient, scalable, and adaptable systems. Mixture of Experts, LLM Architecture
17 June 2024 mDPO: Conditional Preference Optimization for Multimodal Large Language Models Direct preference optimization (DPO) has shown to be an effective method for large language model (LLM) alignment. Recent works have attempted to apply DPO to multimodal scenarios but have found it challenging to achieve consistent improvement. Through a comparative experiment, we identify the unconditional preference problem in multimodal preference optimization, where the model overlooks the image condition. To address this problem, we propose mDPO, a multimodal DPO objective that prevents the over-prioritization of language-only preferences by also optimizing image preference. Moreover, we introduce a reward anchor that forces the reward to be positive for chosen responses, thereby avoiding the decrease in their likelihood -- an intrinsic problem of relative preference optimization. Experiments on two multimodal LLMs of different sizes and three widely used benchmarks demonstrate that mDPO effectively addresses the unconditional preference problem in multimodal preference optimization and significantly improves model performance, particularly in reducing hallucination. Optimization
15 June 2024 SELF-TUNING: Instructing LLMs to Effectively Acquire New Knowledge through Self-Teaching Large language models (LLMs) often struggle to provide up-to-date information due to their one-time training and the constantly evolving nature of the world. To keep LLMs current, existing approaches typically involve continued pre-training on new documents. However, they frequently face difficulties in extracting stored knowledge. Motivated by the remarkable success of the Feynman Technique in efficient human learning, we introduce SELFTUNING, a learning framework aimed at improving an LLM’s ability to effectively acquire new knowledge from raw documents through self-teaching. Specifically, we develop a SELFTEACHING strategy that augments the documents with a set of knowledge-intensive tasks created in a self-supervised manner, focusing on three crucial aspects: memorization, comprehension, and self-reflection. In addition, we introduce three Wiki-Newpages-2023-QA datasets to facilitate an in-depth analysis of an LLM’s knowledge acquisition ability concerning memorization, extraction, and reasoning. Extensive experimental results on LLAMA2 family models reveal that SELF-TUNING consistently exhibits superior performance across all knowledge acquisition tasks and excels in preserving previous knowledge.1 LLM Training, Knowledge Integration
15 June 2024 DeepSeek-Coder-V2 We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K. Domain Specific LLMs
14 June 2024 Nemotron-4 340B Technical Report We release the Nemotron-4 340B model family, including Nemotron-4-340B-Base, Nemotron-4- 340B-Instruct, and Nemotron-4-340B-Reward. Our models are open access under the NVIDIA Open Model License Agreement, a permissive model license that allows distribution, modification, and use of the models and its outputs. These models perform competitively to open access models on a wide range of evaluation benchmarks, and were sized to fit on a single DGX H100 with 8 GPUs when deployed in FP8 precision. We believe that the community can benefit from these models in various research studies and commercial applications, especially for generating synthetic data to train smaller language models. Notably, over 98% of data used in our model alignment process is synthetically generated, showcasing the effectiveness of these models in generating synthetic data. To further support open research and facilitate model development, w Foundational LLM
14 June 2024 Open-Sora 1.2 We design and implement Open-Sora, an initiative dedicated to efficiently producing high-quality video. We hope to make the model, tools and all details accessible to all. By embracing open-source principles, Open-Sora not only democratizes access to advanced video generation techniques, but also offers a streamlined and user-friendly platform that simplifies the complexities of video generation. With Open-Sora, our goal is to foster innovation, creativity, and inclusivity within the field of content creation. Multimodal foundational model
14 June 2024 Be like a Goldfish, Don't Memorize! Mitigating Memorization in Generative LLMs Large language models can memorize and repeat their training data, causing privacy and copyright risks. To mitigate memorization, we introduce a subtle modification to the next-token training objective that we call the goldfish loss. During training, a randomly sampled subset of tokens are excluded from the loss computation. These dropped tokens are not memorized by the model, which prevents verbatim reproduction of a complete chain of tokens from the training set. We run extensive experiments training billion-scale Llama-2 models, both pre-trained and trained from scratch, and demonstrate significant reductions in extractable memorization with little to no impact on downstream benchmarks. New Loss
13 June 2024 An Image is Worth More Than 16x16 Patches: Exploring Transformers on Individual Pixels This work does not introduce a new method. Instead, we present an interesting finding that questions the necessity of the inductive bias -- locality in modern computer vision architectures. Concretely, we find that vanilla Transformers can operate by directly treating each individual pixel as a token and achieve highly performant results. This is substantially different from the popular design in Vision Transformer, which maintains the inductive bias from ConvNets towards local neighborhoods (e.g. by treating each 16x16 patch as a token). We mainly showcase the effectiveness of pixels-as-tokens across three well-studied tasks in computer vision: supervised learning for object classification, self-supervised learning via masked autoencoding, and image generation with diffusion models. Although directly operating on individual pixels is less computationally practical, we believe the community must be aware of this surprising piece of knowledge when devising the next generation of neural architectures for computer vision. Convolutional Networks, Transformers
13 June 2024 Visual Sketchpad: Sketching as a Visual Chain of Thought for Multimodal Language Models Humans draw to facilitate reasoning: we draw auxiliary lines when solving geometry problems; we mark and circle when reasoning on maps; we use sketches to amplify our ideas and relieve our limited-capacity working memory. However, such actions are missing in current multimodal language models (LMs). Current chain-of-thought and tool-use paradigms only use text as intermediate reasoning steps. In this work, we introduce Sketchpad, a framework that gives multimodal LMs a visual sketchpad and tools to draw on the sketchpad. The LM conducts planning and reasoning according to the visual artifacts it has drawn. Different from prior work, which uses text-to-image models to enable LMs to draw, Sketchpad enables LMs to draw with lines, boxes, marks, etc., which is closer to human sketching and better facilitates reasoning. Sketchpad can also use specialist vision models during the sketching process (e.g., draw bounding boxes with object detection models, draw masks with segmentation models), to further enhance visual perception and reasoning. We experiment with a wide range of math tasks (including geometry, functions, graphs, and chess) and complex visual reasoning tasks. Sketchpad substantially improves performance on all tasks over strong base models with no sketching, yielding an average gain of 12.7% on math tasks, and 8.6% on vision tasks. GPT-4o with Sketchpad sets a new state of the art on all tasks, including V*Bench (80.3%), BLINK spatial reasoning (83.9%), and visual correspondence (80.8%). Multimodal models, Prompt Engineering
12 June 2024 Multimodal Table Understanding Although great progress has been made by previous table understanding methods including recent approaches based on large language models (LLMs), they rely heavily on the premise that given tables must be converted into a certain text sequence (such as Markdown or HTML) to serve as model input. However, it is difficult to access such high-quality textual table representations in some real-world scenarios, and table images are much more accessible. Therefore, how to directly understand tables using intuitive visual information is a crucial and urgent challenge for developing more practical applications. In this paper, we propose a new problem, multimodal table understanding, where the model needs to generate correct responses to various table-related requests based on the given table image. To facilitate both the model training and evaluation, we construct a large-scale dataset named MMTab, which covers a wide spectrum of table images, instructions and tasks. On this basis, we develop Table-LLaVA, a generalist tabular multimodal large language model (MLLM), which significantly outperforms recent open-source MLLM baselines on 23 benchmarks under held-in and held-out settings. Domain Specific LLMs
11 June 2024 TextGrad: Automatic "Differentiation" via Text AI is undergoing a paradigm shift, with breakthroughs achieved by systems orchestrating multiple large language models (LLMs) and other complex components. As a result, developing principled and automated optimization methods for compound AI systems is one of the most important new challenges. Neural networks faced a similar challenge in its early days until backpropagation and automatic differentiation transformed the field by making optimization turn-key. Inspired by this, we introduce TextGrad, a powerful framework performing automatic ``differentiation'' via text. TextGrad backpropagates textual feedback provided by LLMs to improve individual components of a compound AI system. In our framework, LLMs provide rich, general, natural language suggestions to optimize variables in computation graphs, ranging from code snippets to molecular structures. TextGrad follows PyTorch's syntax and abstraction and is flexible and easy-to-use. It works out-of-the-box for a variety of tasks, where the users only provide the objective function without tuning components or prompts of the framework. We showcase TextGrad's effectiveness and generality across a diverse range of applications, from question answering and molecule optimization to radiotherapy treatment planning. Without modifying the framework, TextGrad improves the zero-shot accuracy of GPT-4o in Google-Proof Question Answering from 51% to 55%, yields 20% relative performance gain in optimizing LeetCode-Hard coding problem solutions, improves prompts for reasoning, designs new druglike small molecules with desirable in silico binding, and designs radiation oncology treatment plans with high specificity. TextGrad lays a foundation to accelerate the development of the next-generation of AI systems. Optimization Algorithm
11 June 2024 Never Miss A Beat: An Efficient Recipe for Context Window Extension of Large Language Models with Consistent "Middle" Enhancement Recently, many methods have been developed to extend the context length of pre-trained large language models (LLMs), but they often require fine-tuning at the target length (≫4K) and struggle to effectively utilize information from the middle part of the context. To address these issues, we propose Continuity-Relativity indExing with gAussian Middle (CREAM), which interpolates positional encodings by manipulating position indices. Apart from being simple, CREAM is training-efficient: it only requires fine-tuning at the pre-trained context window (eg, Llama 2-4K) and can extend LLMs to a much longer target context length (eg, 256K). To ensure that the model focuses more on the information in the middle, we introduce a truncated Gaussian to encourage sampling from the middle part of the context during fine-tuning, thus alleviating the Lost-in-the-Middle'' problem faced by long-context LLMs. Experimental results show that CREAM successfully extends LLMs to the target length for both Base and Chat versions of π™»πš•πšŠπš–πšŠπŸΈ-πŸ½π™± with Never Miss A Beat''. Our code will be publicly available soon. Context Length
11 June 2024 Needle In A Multimodal Haystack With the rapid advancement of multimodal large language models (MLLMs), their evaluation has become increasingly comprehensive. However, understanding long multimodal content, as a foundational ability for real-world applications, remains underexplored. In this work, we present Needle In A Multimodal Haystack (MM-NIAH), the first benchmark specifically designed to systematically evaluate the capability of existing MLLMs to comprehend long multimodal documents. Our benchmark includes three types of evaluation tasks: multimodal retrieval, counting, and reasoning. In each task, the model is required to answer the questions according to different key information scattered throughout the given multimodal document. Evaluating the leading MLLMs on MM-NIAH, we observe that existing models still have significant room for improvement on these tasks, especially on vision-centric evaluation. We hope this work can provide a platform for further research on long multimodal document comprehension and contribute to the advancement of MLLMs. Multimodal models
11 June 2024 Estimating the Hallucination Rate of Generative AI This work is about estimating the hallucination rate for in-context learning (ICL) with Generative AI. In ICL, a conditional generative model (CGM) is prompted with a dataset and asked to make a prediction based on that dataset. The Bayesian interpretation of ICL assumes that the CGM is calculating a posterior predictive distribution over an unknown Bayesian model of a latent parameter and data. With this perspective, we define a hallucination as a generated prediction that has low-probability under the true latent parameter. We develop a new method that takes an ICL problem -- that is, a CGM, a dataset, and a prediction question -- and estimates the probability that a CGM will generate a hallucination. Our method only requires generating queries and responses from the model and evaluating its response log probability. We empirically evaluate our method on synthetic regression and natural language ICL tasks using large language models. Hallucination
11 June 2024 Simple and Effective Masked Diffusion Language Models While diffusion models excel at generating high-quality images, prior work reports a significant performance gap between diffusion and autoregressive (AR) methods in language modeling. In this work, we show that simple masked discrete diffusion is more performant than previously thought. We apply an effective training recipe that improves the performance of masked diffusion models and derive a simplified, Rao-Blackwellized objective that results in additional improvements. Our objective has a simple form -- it is a mixture of classical masked language modeling losses -- and can be used to train encoder-only language models that admit efficient samplers, including ones that can generate arbitrary lengths of text semi-autoregressively like a traditional language model. On language modeling benchmarks, a range of masked diffusion models trained with modern engineering practices achieves a new state-of-the-art among diffusion models, and approaches AR perplexity. We release our code at: https://github.com/kuleshov-group/mdlm Diffusion Models
11 June 2024 Merging Improves Self-Critique Against Jailbreak Attacks The robustness of large language models (LLMs) against adversarial manipulations, such as jailbreak attacks, remains a significant challenge. In this work, we propose an approach that enhances the self-critique capability of the LLM and further fine-tunes it over sanitized synthetic data. This is done with the addition of an external critic model that can be merged with the original, thus bolstering self-critique capabilities and improving the robustness of the LLMs response to adversarial prompts. Our results demonstrate that the combination of merging and self-critique can reduce the attack success rate of adversaries significantly, thus offering a promising defense mechanism against jailbreak attacks. Code, data and models released at https://github.com/vicgalle/merging-self-critique-jailbreaks . Adversarial Attacks, Jailbreaking
10 June 2024 NATURAL PLAN: Benchmarking LLMs on Natural Language Planning We introduce NATURAL PLAN, a realistic planning benchmark in natural language containing 3 key tasks: Trip Planning, Meeting Planning, and Calendar Scheduling. We focus our evaluation on the planning capabilities of LLMs with full information on the task, by providing outputs from tools such as Google Flights, Google Maps, and Google Calendar as contexts to the models. This eliminates the need for a tool-use environment for evaluating LLMs on Planning. We observe that NATURAL PLAN is a challenging benchmark for state of the art models. For example, in Trip Planning, GPT-4 and Gemini 1.5 Pro could only achieve 31.1% and 34.8% solve rate respectively. We find that model performance drops drastically as the complexity of the problem increases: all models perform below 5% when there are 10 cities, highlighting a significant gap in planning in natural language for SoTA LLMs. We also conduct extensive ablation studies on NATURAL PLAN to further shed light on the (in)effectiveness of approaches such as self-correction, few-shot generalization, and in-context planning with long-contexts on improving LLM planning. Agents, Planning
07 June 2024 SelfGoal: Your Language Agents Already Know How to Achieve High-level Goals Language agents powered by large language models (LLMs) are increasingly valuable as decision-making tools in domains such as gaming and programming. However, these agents often face challenges in achieving high-level goals without detailed instructions and in adapting to environments where feedback is delayed. In this paper, we present SelfGoal, a novel automatic approach designed to enhance agents' capabilities to achieve high-level goals with limited human prior and environmental feedback. The core concept of SelfGoal involves adaptively breaking down a high-level goal into a tree structure of more practical subgoals during the interaction with environments while identifying the most useful subgoals and progressively updating this structure. Experimental results demonstrate that SelfGoal significantly enhances the performance of language agents across various tasks, including competitive, cooperative, and deferred feedback environments. Agents, Task Decomposition
07 June 2024 CRAG -- Comprehensive RAG Benchmark Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution to alleviate Large Language Model (LLM)'s deficiency in lack of knowledge. Existing RAG datasets, however, do not adequately represent the diverse and dynamic nature of real-world Question Answering (QA) tasks. To bridge this gap, we introduce the Comprehensive RAG Benchmark (CRAG), a factual question answering benchmark of 4,409 question-answer pairs and mock APIs to simulate web and Knowledge Graph (KG) search. CRAG is designed to encapsulate a diverse array of questions across five domains and eight question categories, reflecting varied entity popularity from popular to long-tail, and temporal dynamisms ranging from years to seconds. Our evaluation on this benchmark highlights the gap to fully trustworthy QA. Whereas most advanced LLMs achieve <=34% accuracy on CRAG, adding RAG in a straightforward manner improves the accuracy only to 44%. State-of-the-art industry RAG solutions only answer 63% questions without any hallucination. CRAG also reveals much lower accuracy in answering questions regarding facts with higher dynamism, lower popularity, or higher complexity, suggesting future research directions. The CRAG benchmark laid the groundwork for a KDD Cup 2024 challenge, attracting thousands of participants and submissions within the first 50 days of the competition. We commit to maintaining CRAG to serve research communities in advancing RAG solutions and general QA solutions. RAG, Benchmark
07 June 2024 Mixture-of-Agents Enhances Large Language Model Capabilities Recent advances in large language models (LLMs) demonstrate substantial capabilities in natural language understanding and generation tasks. With the growing number of LLMs, how to harness the collective expertise of multiple LLMs is an exciting open direction. Toward this goal, we propose a new approach that leverages the collective strengths of multiple LLMs through a Mixture-of-Agents (MoA) methodology. In our approach, we construct a layered MoA architecture wherein each layer comprises multiple LLM agents. Each agent takes all the outputs from agents in the previous layer as auxiliary information in generating its response. MoA models achieves state-of-art performance on AlpacaEval 2.0, MT-Bench and FLASK, surpassing GPT-4 Omni. For example, our MoA using only open-source LLMs is the leader of AlpacaEval 2.0 by a substantial gap, achieving a score of 65.1% compared to 57.5% by GPT-4 Omni. Agents, Multi-Agents
06 June 2024 AgentGym: Evolving Large Language Model-based Agents across Diverse Environments Building generalist agents that can handle diverse tasks and evolve themselves across different environments is a long-term goal in the AI community. Large language models (LLMs) are considered a promising foundation to build such agents due to their generalized capabilities. Current approaches either have LLM-based agents imitate expert-provided trajectories step-by-step, requiring human supervision, which is hard to scale and limits environmental exploration; or they let agents explore and learn in isolated environments, resulting in specialist agents with limited generalization. In this paper, we take the first step towards building generally-capable LLM-based agents with self-evolution ability. We identify a trinity of ingredients: 1) diverse environments for agent exploration and learning, 2) a trajectory set to equip agents with basic capabilities and prior knowledge, and 3) an effective and scalable evolution method. We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration. AgentGym also includes a database with expanded instructions, a benchmark suite, and high-quality trajectories across environments. Next, we propose a novel method, AgentEvol, to investigate the potential of agent self-evolution beyond previously seen data across tasks and environments. Experimental results show that the evolved agents can achieve results comparable to SOTA models. We release the AgentGym suite, including the platform, dataset, benchmark, checkpoints, and algorithm implementations. Agents
06 June 2024 Are We Done with MMLU? Maybe not. We identify and analyse errors in the popular Massive Multitask Language Understanding (MMLU) benchmark. Even though MMLU is widely adopted, our analysis demonstrates numerous ground truth errors that obscure the true capabilities of LLMs. For example, we find that 57% of the analysed questions in the Virology subset contain errors. To address this issue, we introduce a comprehensive framework for identifying dataset errors using a novel error taxonomy. Then, we create MMLU-Redux, which is a subset of 3,000 manually re-annotated questions across 30 MMLU subjects. Using MMLU-Redux, we demonstrate significant discrepancies with the model performance metrics that were originally reported. Our results strongly advocate for revising MMLU's error-ridden questions to enhance its future utility and reliability as a benchmark. Therefore, we open up MMLU-Redux for additional annotation https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux. Evaluation, Task Benchmarks
06 June 2024 GenAI Arena: An Open Evaluation Platform for Generative Models Generative AI has made remarkable strides to revolutionize fields such as image and video generation. These advancements are driven by innovative algorithms, architecture, and data. However, the rapid proliferation of generative models has highlighted a critical gap: the absence of trustworthy evaluation metrics. Current automatic assessments such as FID, CLIP, FVD, etc often fail to capture the nuanced quality and user satisfaction associated with generative outputs. This paper proposes an open platform GenAI-Arena to evaluate different image and video generative models, where users can actively participate in evaluating these models. By leveraging collective user feedback and votes, GenAI-Arena aims to provide a more democratic and accurate measure of model performance. It covers three arenas for text-to-image generation, text-to-video generation, and image editing respectively. Currently, we cover a total of 27 open-source generative models. GenAI-Arena has been operating for four months, amassing over 6000 votes from the community. We describe our platform, analyze the data, and explain the statistical methods for ranking the models. To further promote the research in building model-based evaluation metrics, we release a cleaned version of our preference data for the three tasks, namely GenAI-Bench. We prompt the existing multi-modal models like Gemini, GPT-4o to mimic human voting. We compute the correlation between model voting with human voting to understand their judging abilities. Our results show existing multimodal models are still lagging in assessing the generated visual content, even the best model GPT-4o only achieves a Pearson correlation of 0.22 in the quality subscore, and behaves like random guessing in others. Evaluation
06 June 2024 Scaling and evaluating sparse autoencoders Sparse autoencoders provide a promising unsupervised approach for extracting interpretable features from a language model by reconstructing activations from a sparse bottleneck layer. Since language models learn many concepts, autoencoders need to be very large to recover all relevant features. However, studying the properties of autoencoder scaling is difficult due to the need to balance reconstruction and sparsity objectives and the presence of dead latents. We propose using k-sparse autoencoders [Makhzani and Frey, 2013] to directly control sparsity, simplifying tuning and improving the reconstruction-sparsity frontier. Additionally, we find modifications that result in few dead latents, even at the largest scales we tried. Using these techniques, we find clean scaling laws with respect to autoencoder size and sparsity. We also introduce several new metrics for evaluating feature quality based on the recovery of hypothesized features, the explainability of activation patterns, and the sparsity of downstream effects. These metrics all generally improve with autoencoder size. To demonstrate the scalability of our approach, we train a 16 million latent autoencoder on GPT-4 activations for 40 billion tokens. We release training code and autoencoders for open-source models, as well as a visualizer. LLM Architecture
06 June 2024 Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models We introduce Buffer of Thoughts (BoT), a novel and versatile thought-augmented reasoning approach for enhancing accuracy, efficiency and robustness of large language models (LLMs). Specifically, we propose meta-buffer to store a series of informative high-level thoughts, namely thought-template, distilled from the problem-solving processes across various tasks. Then for each problem, we retrieve a relevant thought-template and adaptively instantiate it with specific reasoning structures to conduct efficient reasoning. To guarantee the scalability and stability, we further propose buffer-manager to dynamically update the meta-buffer, thus enhancing the capacity of meta-buffer as more tasks are solved. We conduct extensive experiments on 10 challenging reasoning-intensive tasks, and achieve significant performance improvements over previous SOTA methods: 11% on Game of 24, 20% on Geometric Shapes and 51% on Checkmate-in-One. Further analysis demonstrate the superior generalization ability and model robustness of our BoT, while requiring only 12% of the cost of multi-query prompting methods (e.g., tree/graph of thoughts) on average. Notably, we find that our Llama3-8B+BoT has the potential to surpass Llama3-70B model. RAG, Knowledge Integration
05 June 2024 Improve Mathematical Reasoning in Language Models by Automated Process Supervision Complex multi-step reasoning tasks, such as solving mathematical problems or generating code, remain a significant hurdle for even the most advanced large language models (LLMs). Verifying LLM outputs with an Outcome Reward Model (ORM) is a standard inference-time technique aimed at enhancing the reasoning performance of LLMs. However, this still proves insufficient for reasoning tasks with a lengthy or multi-hop reasoning chain, where the intermediate outcomes are neither properly rewarded nor penalized. Process supervision addresses this limitation by assigning intermediate rewards during the reasoning process. To date, the methods used to collect process supervision data have relied on either human annotation or per-step Monte Carlo estimation, both prohibitively expensive to scale, thus hindering the broad application of this technique. In response to this challenge, we propose a novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named OmegaPRM for the efficient collection of high-quality process supervision data. This algorithm swiftly identifies the first error in the Chain of Thought (CoT) with binary search and balances the positive and negative examples, thereby ensuring both efficiency and quality. As a result, we are able to collect over 1.5 million process supervision annotations to train a Process Reward Model (PRM). Utilizing this fully automated process supervision alongside the weighted self-consistency algorithm, we have enhanced the instruction tuned Gemini Pro model's math reasoning performance, achieving a 69.4% success rate on the MATH benchmark, a 36% relative improvement from the 51% base model performance. Additionally, the entire process operates without any human intervention, making our method both financially and computationally cost-effective compared to existing methods. Math Reasoning
05 June 2024 SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales Large language models (LLMs) often generate inaccurate or fabricated information and generally fail to indicate their confidence, which limits their broader applications. Previous work elicits confidence from LLMs by direct or self-consistency prompting, or constructing specific datasets for supervised finetuning. The prompting-based approaches have inferior performance, and the training-based approaches are limited to binary or inaccurate group-level confidence estimates. In this work, we present the advanced SaySelf, a training framework that teaches LLMs to express more accurate fine-grained confidence estimates. In addition, beyond the confidence scores, SaySelf initiates the process of directing LLMs to produce self-reflective rationales that clearly identify gaps in their parametric knowledge and explain their uncertainty. This is achieved by using an LLM to automatically summarize the uncertainties in specific knowledge via natural language. The summarization is based on the analysis of the inconsistency in multiple sampled reasoning chains, and the resulting data is utilized for supervised fine-tuning. Moreover, we utilize reinforcement learning with a meticulously crafted reward function to calibrate the confidence estimates, motivating LLMs to deliver accurate, high-confidence predictions and to penalize overconfidence in erroneous outputs. Experimental results in both in-distribution and out-of-distribution datasets demonstrate the effectiveness of SaySelf in reducing the confidence calibration error and maintaining the task performance. We show that the generated self-reflective rationales are reasonable and can further contribute to the calibration. LLM Training, LLM Challenges
04 June 2024 Guiding a Diffusion Model with a Bad Version of Itself The primary axes of interest in image-generating diffusion models are image quality, the amount of variation in the results, and how well the results align with a given condition, e.g., a class label or a text prompt. The popular classifier-free guidance approach uses an unconditional model to guide a conditional model, leading to simultaneously better prompt alignment and higher-quality images at the cost of reduced variation. These effects seem inherently entangled, and thus hard to control. We make the surprising observation that it is possible to obtain disentangled control over image quality without compromising the amount of variation by guiding generation using a smaller, less-trained version of the model itself rather than an unconditional model. This leads to significant improvements in ImageNet generation, setting record FIDs of 1.01 for 64x64 and 1.25 for 512x512, using publicly available networks. Furthermore, the method is also applicable to unconditional diffusion models, drastically improving their quality. Diffusion Models
04 June 2024 To Believe or Not to Believe Your LLM We explore uncertainty quantification in large language models (LLMs), with the goal to identify when uncertainty in responses given a query is large. We simultaneously consider both epistemic and aleatoric uncertainties, where the former comes from the lack of knowledge about the ground truth (such as about facts or the language), and the latter comes from irreducible randomness (such as multiple possible answers). In particular, we derive an information-theoretic metric that allows to reliably detect when only epistemic uncertainty is large, in which case the output of the model is unreliable. This condition can be computed based solely on the output of the model obtained simply by some special iterative prompting based on the previous responses. Such quantification, for instance, allows to detect hallucinations (cases when epistemic uncertainty is high) in both single- and multi-answer responses. This is in contrast to many standard uncertainty quantification strategies (such as thresholding the log-likelihood of a response) where hallucinations in the multi-answer case cannot be detected. We conduct a series of experiments which demonstrate the advantage of our formulation. Further, our investigations shed some light on how the probabilities assigned to a given output by an LLM can be amplified by iterative prompting, which might be of independent interest. Hallucinations, Uncertainty Estimation
03 June 2024 Self-Improving Robust Preference Optimization Both online and offline RLHF methods such as PPO and DPO have been extremely successful in aligning AI with human preferences. Despite their success, the existing methods suffer from a fundamental problem that their optimal solution is highly task-dependent (i.e., not robust to out-of-distribution (OOD) tasks). Here we address this challenge by proposing Self-Improving Robust Preference Optimization SRPO, a practical and mathematically principled offline RLHF framework that is completely robust to the changes in the task. The key idea of SRPO is to cast the problem of learning from human preferences as a self-improvement process, which can be mathematically expressed in terms of a min-max objective that aims at joint optimization of self-improvement policy and the generative policy in an adversarial fashion. The solution for this optimization problem is independent of the training task and thus it is robust to its changes. We then show that this objective can be re-expressed in the form of a non-adversarial offline loss which can be optimized using standard supervised optimization techniques at scale without any need for reward model and online inference. We show the effectiveness of SRPO in terms of AI Win-Rate (WR) against human (GOLD) completions. In particular, when SRPO is evaluated on the OOD XSUM dataset, it outperforms the celebrated DPO by a clear margin of 15% after 5 self-revisions, achieving WR of 90%. Optimization, Alignment
03 June 2024 Towards Scalable Automated Alignment of LLMs: A Survey Alignment is the most critical step in building large language models (LLMs) that meet human needs. With the rapid development of LLMs gradually surpassing human capabilities, traditional alignment methods based on human-annotation are increasingly unable to meet the scalability demands. Therefore, there is an urgent need to explore new sources of automated alignment signals and technical approaches. In this paper, we systematically review the recently emerging methods of automated alignment, attempting to explore how to achieve effective, scalable, automated alignment once the capabilities of LLMs exceed those of humans. Specifically, we categorize existing automated alignment methods into 4 major categories based on the sources of alignment signals and discuss the current status and potential development of each category. Additionally, we explore the underlying mechanisms that enable automated alignment and discuss the essential factors that make automated alignment technologies feasible and effective from the fundamental role of alignment. Alignment
02 June 2024 Show, Don't Tell: Aligning Language Models with Demonstrated Feedback Language models are aligned to emulate the collective voice of many, resulting in outputs that align with no one in particular. Steering LLMs away from generic output is possible through supervised finetuning or RLHF, but requires prohibitively large datasets for new ad-hoc tasks. We argue that it is instead possible to align an LLM to a specific setting by leveraging a very small number (<10) of demonstrations as feedback. Our method, Demonstration ITerated Task Optimization (DITTO), directly aligns language model outputs to a user's demonstrated behaviors. Derived using ideas from online imitation learning, DITTO cheaply generates online comparison data by treating users' demonstrations as preferred over output from the LLM and its intermediate checkpoints. We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts. Additionally, we conduct a user study soliciting a range of demonstrations from participants (N=16). Across our benchmarks and user study, we find that win-rates for DITTO outperform few-shot prompting, supervised fine-tuning, and other self-play methods by an average of 19% points. By using demonstrations as feedback directly, DITTO offers a novel method for effective customization of LLMs. Alignment
01 June 2024 Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality While Transformers have been the main architecture behind deep learning's success in language modeling, state-space models (SSMs) such as Mamba have recently been shown to match or outperform Transformers at small to medium scale. We show that these families of models are actually quite closely related, and develop a rich framework of theoretical connections between SSMs and variants of attention, connected through various decompositions of a well-studied class of structured semiseparable matrices. Our state space duality (SSD) framework allows us to design a new architecture (Mamba-2) whose core layer is an a refinement of Mamba's selective SSM that is 2-8X faster, while continuing to be competitive with Transformers on language modeling. LLM Architecture
01 June 2024 Artificial Generational Intelligence: Cultural Accumulation in Reinforcement Learning Cultural accumulation drives the open-ended and diverse progress in capabilities spanning human history. It builds an expanding body of knowledge and skills by combining individual exploration with inter-generational information transmission. Despite its widespread success among humans, the capacity for artificial learning agents to accumulate culture remains under-explored. In particular, approaches to reinforcement learning typically strive for improvements over only a single lifetime. Generational algorithms that do exist fail to capture the open-ended, emergent nature of cultural accumulation, which allows individuals to trade-off innovation and imitation. Building on the previously demonstrated ability for reinforcement learning agents to perform social learning, we find that training setups which balance this with independent learning give rise to cultural accumulation. These accumulating agents outperform those trained for a single lifetime with the same cumulative experience. We explore this accumulation by constructing two models under two distinct notions of a generation: episodic generations, in which accumulation occurs via in-context learning and train-time generations, in which accumulation occurs via in-weights learning. In-context and in-weights cultural accumulation can be interpreted as analogous to knowledge and skill accumulation, respectively. To the best of our knowledge, this work is the first to present general models that achieve emergent cultural accumulation in reinforcement learning, opening up new avenues towards more open-ended learning systems, as well as presenting new opportunities for modelling human culture. Cultural Adaptation

πŸŽ“ Courses

[Ongoing] Applied LLMs Mastery 2024

Join 1000+ students on this 10-week adventure as we delve into the application of LLMs across a variety of use cases

Link to the course website

[Feb 2024] Registrations are still open click here to register

πŸ—“οΈ*Week 1 [Jan 15 2024]*: Practical Introduction to LLMs

  • Applied LLM Foundations
  • Real World LLM Use Cases
  • Domain and Task Adaptation Methods

πŸ—“οΈ*Week 2 [Jan 22 2024]*: Prompting and Prompt Engineering

  • Basic Prompting Principles
  • Types of Prompting
  • Applications, Risks and Advanced Prompting

πŸ—“οΈ*Week 3 [Jan 29 2024]*: LLM Fine-tuning

  • Basics of Fine-Tuning
  • Types of Fine-Tuning
  • Fine-Tuning Challenges

πŸ—“οΈ*Week 4 [Feb 5 2024]*: RAG (Retrieval-Augmented Generation)

  • Understanding the concept of RAG in LLMs
  • Key components of RAG
  • Advanced RAG Methods

πŸ—“οΈ*Week 5 [ Feb 12 2024]*: Tools for building LLM Apps

  • Fine-tuning Tools
  • RAG Tools
  • Tools for observability, prompting, serving, vector search etc.

πŸ—“οΈ*Week 6 [Feb 19 2024]*: Evaluation Techniques

  • Types of Evaluation
  • Common Evaluation Benchmarks
  • Common Metrics

πŸ—“οΈ*Week 7 [Feb 26 2024]*: Building Your Own LLM Application

  • Components of LLM application
  • Build your own LLM App end to end

πŸ—“οΈ*Week 8 [March 4 2024]*: Advanced Features and Deployment

  • LLM lifecycle and LLMOps
  • LLM Monitoring and Observability
  • Deployment strategies

πŸ—“οΈ*Week 9 [March 11 2024]*: Challenges with LLMs

  • Scaling Challenges
  • Behavioral Challenges
  • Future directions

πŸ—“οΈ*Week 10 [March 18 2024]*: Emerging Research Trends

  • Smaller and more performant models
  • Multimodal models
  • LLM Alignment

πŸ—“οΈ*Week 11 *Bonus* [March 25 2024]*: Foundations

  • Generative Models Foundations
  • Self-Attention and Transformers
  • Neural Networks for Language

πŸ“– List of Free GenAI Courses

LLM Basics and Foundations
  1. Large Language Models by ETH Zurich

  2. Understanding Large Language Models by Princeton

  3. Transformers course by Huggingface

  4. NLP course by Huggingface

  5. CS324 - Large Language Models by Stanford

  6. Generative AI with Large Language Models by Coursera

  7. Introduction to Generative AI by Coursera

  8. Generative AI Fundamentals by Google Cloud

  9. Introduction to Large Language Models by Google Cloud

  10. Introduction to Generative AI by Google Cloud

  11. Generative AI Concepts by DataCamp (Daniel Tedesco Data Lead @ Google)

  12. 1 Hour Introduction to LLM (Large Language Models) by WeCloudData

  13. LLM Foundation Models from the Ground Up | Primer by Databricks

  14. Generative AI Explained by Nvidia

  15. Transformer Models and BERT Model by Google Cloud

  16. Generative AI Learning Plan for Decision Makers by AWS

  17. Introduction to Responsible AI by Google Cloud

  18. Fundamentals of Generative AI by Microsoft Azure

  19. Generative AI for Beginners by Microsoft

  20. ChatGPT for Beginners: The Ultimate Use Cases for Everyone by Udemy

  21. [1hr Talk] Intro to Large Language Models by Andrej Karpathy

  22. ChatGPT for Everyone by Learn Prompting

  23. Large Language Models (LLMs) (In English) by Kshitiz Verma (JK Lakshmipat University, Jaipur, India)

Building LLM Applications
  1. LLMOps: Building Real-World Applications With Large Language Models by Udacity

  2. Full Stack LLM Bootcamp by FSDL

  3. Generative AI for beginners by Microsoft

  4. Large Language Models: Application through Production by Databricks

  5. Generative AI Foundations by AWS

  6. Introduction to Generative AI Community Course by ineuron

  7. LLM University by Cohere

  8. LLM Learning Lab by Lightning AI

  9. LangChain for LLM Application Development by Deeplearning.AI

  10. LLMOps by DeepLearning.AI

  11. Automated Testing for LLMOps by DeepLearning.AI

  12. Building Generative AI Applications Using Amazon Bedrock by AWS

  13. Efficiently Serving LLMs by DeepLearning.AI

  14. Building Systems with the ChatGPT API by DeepLearning.AI

  15. Serverless LLM apps with Amazon Bedrock by DeepLearning.AI

  16. Building Applications with Vector Databases by DeepLearning.AI

  17. Automated Testing for LLMOps by DeepLearning.AI

  18. LLMOps by DeepLearning.AI

  19. Build LLM Apps with LangChain.js by DeepLearning.AI

  20. Advanced Retrieval for AI with Chroma by DeepLearning.AI

  21. Operationalizing LLMs on Azure by Coursera

  22. Generative AI Full Course – Gemini Pro, OpenAI, Llama, Langchain, Pinecone, Vector Databases & More by freeCodeCamp.org

  23. Training & Fine-Tuning LLMs for Production by Activeloop

Prompt Engineering, RAG and Fine-Tuning
  1. LangChain & Vector Databases in Production by Activeloop

  2. Reinforcement Learning from Human Feedback by DeepLearning.AI

  3. Building Applications with Vector Databases by DeepLearning.AI

  4. Finetuning Large Language Models by Deeplearning.AI

  5. LangChain: Chat with Your Data by Deeplearning.AI

  6. Building Systems with the ChatGPT API by Deeplearning.AI

  7. Prompt Engineering with Llama 2 by Deeplearning.AI

  8. Building Applications with Vector Databases by Deeplearning.AI

  9. ChatGPT Prompt Engineering for Developers by Deeplearning.AI

  10. Advanced RAG Orchestration series by LlamaIndex

  11. Prompt Engineering Specialization by Coursera

  12. Augment your LLM Using Retrieval Augmented Generation by Nvidia

  13. Knowledge Graphs for RAG by Deeplearning.AI

  14. Open Source Models with Hugging Face by Deeplearning.AI

  15. Vector Databases: from Embeddings to Applications by Deeplearning.AI

  16. Understanding and Applying Text Embeddings by Deeplearning.AI

  17. JavaScript RAG Web Apps with LlamaIndex by Deeplearning.AI

  18. Quantization Fundamentals with Hugging Face by Deeplearning.AI

  19. Preprocessing Unstructured Data for LLM Applications by Deeplearning.AI

  20. Retrieval Augmented Generation for Production with LangChain & LlamaIndex by Activeloop

  21. Quantization in Depth by Deeplearning.AI

Evaluation
  1. Building and Evaluating Advanced RAG Applications by DeepLearning.AI
  2. Evaluating and Debugging Generative AI Models Using Weights and Biases by Deeplearning.AI
  3. Quality and Safety for LLM Applications by Deeplearning.AI
  4. Red Teaming LLM Applications by Deeplearning.AI
Multimodal
  1. How Diffusion Models Work by DeepLearning.AI
  2. How to Use Midjourney, AI Art and ChatGPT to Create an Amazing Website by Brad Hussey
  3. Build AI Apps with ChatGPT, DALL-E and GPT-4 by Scrimba
  4. 11-777: Multimodal Machine Learning by Carnegie Mellon University
  5. Prompt Engineering for Vision Models by Deeplearning.AI
Agents
  1. Building RAG Agents with LLMs by Nvidia
  2. Functions, Tools and Agents with LangChain by Deeplearning.AI
  3. AI Agents in LangGraph by Deeplearning.AI
  4. AI Agentic Design Patterns with AutoGen by Deeplearning.AI
  5. Multi AI Agent Systems with crewAI by Deeplearning.AI
  6. Building Agentic RAG with LlamaIndex by Deeplearning.AI
  7. LLM Observability: Agents, Tools, and Chains by Arize AI

Miscellaneous

  1. Avoiding AI Harm by Coursera
  2. Developing AI Policy by Coursera

πŸ“Ž Resources


πŸ’» Interview Prep

Topic wise Questions:

  1. Common GenAI Interview Questions
  2. Prompting and Prompt Engineering
  3. Model Fine-Tuning
  4. Model Evaluation
  5. MLOps for GenAI
  6. Generative Models Foundations
  7. Latest Research Trends

GenAI System Design (Coming Soon):

  1. Designing an LLM-Powered Search Engine
  2. Building a Customer Support Chatbot
  3. Building a system for natural language interaction with your data.
  4. Building an AI Co-pilot
  5. Designing a Custom Chatbot for Q/A on Multimodal Data (Text, Images, Tables, CSV Files)
  6. Building an Automated Product Description and Image Generation System for E-commerce

πŸ““ Code Notebooks

RAG Tutorials

Fine-Tuning Tutorials

Comprehensive LLM Code Repositories

  • LLM-PlayLab This playlab encompasses a multitude of projects crafted through the utilization of Transformer Models

βœ’οΈ Contributing

If you want to add to the repository or find any issues, please feel free to raise a PR and ensure correct placement within the relevant section or category.


πŸ“Œ Cite Us

To cite this guide, use the below format:

@article{areganti_generative_ai_guide,
author = {Reganti, Aishwarya Naresh},
journal = {https://github.com/aishwaryanr/awesome-generative-ai-resources},
month = {01},
title = {{Generative AI Guide}},
year = {2024}
}

License

[MIT License]