Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

trying stackoverflow solution for matrix rendering issue theory page #18

Merged
merged 1 commit into from
Apr 26, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 6 additions & 16 deletions docs/theory.md
Original file line number Diff line number Diff line change
Expand Up @@ -193,30 +193,20 @@ The first column represents the degree $n$, the second column represents the ord

This is a variation of the clm-format for compact notation with just 3 or 4 columns. The coefficients are sorted first w.r.t. degree and then the order, particularly the sine-coefficients are arranged starting first with negative orders. The following matrix represents the klm-format:

'''math
\begin{bmatrix}0 & 0 & $\overline{C}_{0, 0}$ & $\sigma_{\overline{C}_{0, 0}}$ \\0 & 0 & $\overline{C}_{0, 0}$ & $\sigma_{\overline{C}_{0, 0}}$ \\0 & 0 & $\overline{C}_{0, 0}$ & $\sigma_{\overline{C}_{0, 0}}$ \\ 0 & 0 & $\overline{C}_{0, 0}$ & $\sigma_{\overline{C}_{0, 0}}$ \\ 0 & 0 & $\overline{C}_{0, 0}$ & $\sigma_{\overline{C}_{0, 0}}$ \\ 0 & 0 & $\overline{C}_{0, 0}$ & $\sigma_{\overline{C}_{0, 0}}$ \\ 0 & 0 & \overline{C}_{0, 0} & $\sigma_{\overline{C}_{0, 0}}$ \\ 0 & 0 & $\overline{C}_{0, 0}$ & $\sigma_{\overline{C}_{0, 0}}$ \\
0 & 0 & $\overline{C}_{0, 0}$ & $\sigma_{\overline{C}_{0, 0}}$ \\ \vdots & & & \vdots \\ $N_{max}$ & $N_{max}$ & $\overline{C}_{N_{max}, N_{max}}$ & $\sigma_{\overline{C}_{N_max}, N_{max}}$ \\ \begin{bmatrix}
'''

\begin{bmatrix}
0 & 0 & \overline{C}_{0, 0} & \sigma_{\overline{C}_{0, 0}} \\
0 & 0 & \overline{C}_{0, 0} & \sigma_{\overline{C}_{0, 0}} \\
0 & 0 & \overline{C}_{0, 0} & \sigma_{\overline{C}_{0, 0}} \\
0 & 0 & \overline{C}_{0, 0} & \sigma_{\overline{C}_{0, 0}} \\
0 & 0 & \overline{C}_{0, 0} & \sigma_{\overline{C}_{0, 0}} \\
0 & 0 & \overline{C}_{0, 0} & \sigma_{\overline{C}_{0, 0}} \\
0 & 0 & \overline{C}_{0, 0} & \sigma_{\overline{C}_{0, 0}} \\
0 & 0 & \overline{C}_{0, 0} & \sigma_{\overline{C}_{0, 0}} \\
0 & 0 & \overline{C}_{0, 0} & \sigma_{\overline{C}_{0, 0}} \\
\vdots & & & \vdots \\
N_{max} & N_{max} & \overline{C}_{N_{max}, N_{max}} & \sigma_{\overline{C}_{N_{max}, N_{max}}} \\
\begin{bmatrix}


### $\left | C \backslash S \right |$-format
### $\left | C \backslash S \right |$ format

This is another well known arrangement of Spherical Harmonic coefficients. This is a square matrix of size $n_{max}, n_{max}$.

The lower traingular terms are made of the cosine terms


### $\left / S | C \right \backslash$-format
### $\left / S | C \right \backslash$ format

This is yet another popular format where the sine-coefficients are flipped from left to right, to obtain a triangular arrangement which is completed by zeros.

Expand Down