-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
fceb2c7
commit 7e1c74a
Showing
1 changed file
with
123 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"fetching diabetes from sklearn\n" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n", | ||
"[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 3.5s\n", | ||
"[Parallel(n_jobs=-1)]: Done 100 out of 100 | elapsed: 9.3s finished\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from scripts.simulations_util import *\n", | ||
"from scripts.competing_methods_local import *\n", | ||
"from util import apply_splitting_strategy\n", | ||
"from sklearn.metrics import roc_auc_score, f1_score, recall_score, precision_score, mean_squared_error, r2_score, average_precision_score\n", | ||
"X = sample_real_data_X(source = \"imodels\", data_name = \"diabetes_regr\", sample_row_n = 400)\n", | ||
"y = linear_model(X, beta = 1, sigma = None, heritability = 0.8, s = 5)\n", | ||
"X_train, X_tune, X_test, y_train, y_tune, y_test = apply_splitting_strategy(X, y, \"train-test\", 1)\n", | ||
"np.random.seed(42)\n", | ||
"indices_train = np.random.choice(X_train.shape[0], int(X_train.shape[0]*.25), replace=False)\n", | ||
"indices_test = np.random.choice(X_test.shape[0], int(X_test.shape[0]*.25), replace=False)\n", | ||
"X_train_subset = X_train[indices_train]\n", | ||
"y_train_subset = y_train[indices_train]\n", | ||
"X_test_subset = X_test[indices_test]\n", | ||
"y_test_subset = y_test[indices_test]\n", | ||
"# fit RF model\n", | ||
"est = RandomForestRegressor(n_estimators = 100, min_samples_leaf = 5, max_features = 0.33, random_state = 42)\n", | ||
"\n", | ||
"est.fit(X_train, y_train)\n", | ||
"\n", | ||
"# fit RF_plus model\n", | ||
"rf_plus_base = RandomForestPlusRegressor(rf_model=est)\n", | ||
"rf_plus_base.fit(X_train, y_train)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"local_fi_score_train, local_parital_pred_train, local_fi_score_test, local_partial_pred_test, local_fi_score_test_subset, local_partial_pred_test_subset = LFI_evaluation_RF_plus(X_train=X_train, y_train=y_train,\n", | ||
" X_train_subset = X_train_subset, y_train_subset=y_train_subset,\n", | ||
" X_test_subset=X_test_subset, X_test=X_test,\n", | ||
" fit=rf_plus_base)\n", | ||
"local_fi_score_train_subset = local_fi_score_train[indices_train]\n", | ||
"local_partial_pred_train_subset = local_parital_pred_train[indices_train]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[0.6399999999999999, 1.0, 0.44000000000000006, 0.76, 0.8400000000000001, 0.4, 0.7600000000000001, 0.6399999999999999, 0.88, 0.92, 1.0, 0.28, 0.24000000000000002, 0.6400000000000001, 0.72, 0.8400000000000001, 1.0, 0.8, 0.6799999999999999, 0.4, 0.6, 0.6799999999999999, 0.7600000000000001, 1.0, 0.88, 0.52, 0.7200000000000002, 0.6799999999999999, 0.7600000000000001, 0.92, 0.28, 0.8, 0.48]\n", | ||
"[0.8, 1.0, 0.6746031746031746, 0.8211111111111111, 0.911111111111111, 0.5088888888888888, 0.8599999999999999, 0.8, 0.925, 0.9428571428571428, 1.0, 0.45460317460317456, 0.5305555555555554, 0.7642857142857142, 0.8333333333333333, 0.911111111111111, 1.0, 0.8999999999999999, 0.8111111111111111, 0.6638888888888889, 0.7888888888888888, 0.7833333333333332, 0.8599999999999999, 1.0, 0.925, 0.7088888888888889, 0.81, 0.8111111111111111, 0.8599999999999999, 0.9428571428571428, 0.5412698412698412, 0.8999999999999999, 0.6888888888888889]\n", | ||
"[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]\n", | ||
"0.6957575757575759\n", | ||
"0.8100817700817701\n", | ||
"0.0\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"local_fi_score_test_subset = pd.DataFrame(local_fi_score_test_subset)\n", | ||
"auroc = []\n", | ||
"auprc = []\n", | ||
"f1 = []\n", | ||
"support = [1,1,1,1,1,0,0,0,0,0]\n", | ||
"for rownum in range(local_fi_score_test_subset.shape[0]):\n", | ||
" auroc.append(roc_auc_score(support, local_fi_score_test_subset.iloc[rownum,:]))\n", | ||
" auprc.append(average_precision_score(support, local_fi_score_test_subset.iloc[rownum,:]))\n", | ||
" f1.append(f1_score(support, local_fi_score_test_subset.iloc[rownum,:] > 0.5))\n", | ||
"print(auroc)\n", | ||
"print(auprc)\n", | ||
"print(f1)\n", | ||
"print(np.array(auroc).mean())\n", | ||
"print(np.array(auprc).mean())\n", | ||
"print(np.array(f1).mean())\n", | ||
" " | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "base", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.14" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |